81 research outputs found
Molecular and epidemiologic analysis of a county-wide outbreak caused by Salmonella enterica subsp. enterica serovar Enteritidis traced to a bakery
BACKGROUND: An increase in the number of attendees due to acute gastroenteritis and fever was noted at one hospital emergency room in Taiwan over a seven-day period from July to August, 2001. Molecular and epidemiological surveys were performed to trace the possible source of infection. METHODS: An epidemiological investigation was undertaken to determine the cause of the outbreak. Stool and blood samples were collected according to standard protocols per Center for Disease Control, Taiwan. Typing of the Salmonella isolates from stool, blood, and food samples was performed with serotyping, antibiotypes, and pulsed field gel electrophoresis (PFGE) following XbaI restriction enzyme digestion. RESULTS: Comparison of the number of patients with and without acute gastroenteritis (506 and 4467, respectively) during the six weeks before the outbreak week revealed a significant increase in the number of patients during the outbreak week (162 and 942, respectively) (relative risk (RR): 1.44, 95% confidence interval (CI): 1.22–1.70, P value < 0.001). During the week of the outbreak, 34 of 162 patients with gastroenteritis were positive for Salmonella, and 28 of these 34 cases reported eating the same kind of bread. In total, 28 of 34 patients who ate this bread were positive for salmonella compared to only 6 of 128 people who did not eat this bread (RR: 17.6, 95%CI 7.9–39.0, P < 0.001). These breads were produced by the same bakery and were distributed to six different traditional Chinese markets., Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) was isolated from the stool samples of 28 of 32 individuals and from a recalled bread sample. All S. Enteritidis isolates were of the same antibiogram. PFGE typing revealed that all except two of the clinical isolates and the bread isolates were of the same DNA macrorestriction pattern. CONCLUSIONS: The egg-covered bread contaminated with S. Enteritidis was confirmed as the vehicle of infection. Alertness in the emergency room, surveillance by the microbiology laboratory, prompt and thorough investigation to trace the source of outbreaks, and institution of appropriate control measures provide effective control of community outbreaks
Visual Analytics for Epidemiologists: Understanding the Interactions Between Age, Time, and Disease with Multi-Panel Graphs
Visual analytics, a technique aiding data analysis and decision making, is a novel tool that allows for a better understanding of the context of complex systems. Public health professionals can greatly benefit from this technique since context is integral in disease monitoring and biosurveillance. We propose a graphical tool that can reveal the distribution of an outcome by time and age simultaneously.We introduce and demonstrate multi-panel (MP) graphs applied in four different settings: U.S. national influenza-associated and salmonellosis-associated hospitalizations among the older adult population (≥65 years old), 1991-2004; confirmed salmonellosis cases reported to the Massachusetts Department of Public Health for the general population, 2004-2005; and asthma-associated hospital visits for children aged 0-18 at Milwaukee Children's Hospital of Wisconsin, 1997-2006. We illustrate trends and anomalies that otherwise would be obscured by traditional visualization techniques such as case pyramids and time-series plots.MP graphs can weave together two vital dynamics--temporality and demographics--that play important roles in the distribution and spread of diseases, making these graphs a powerful tool for public health and disease biosurveillance efforts
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors
<p>Abstract</p> <p>Background</p> <p>Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown.</p> <p>Methods</p> <p>An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity <it>in vitro </it>were assessed in erlotinib resistant H1650-ER1 cells.</p> <p>Results</p> <p>The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib.</p> <p>Conclusions</p> <p>Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties.</p
The Met oncogene and basal-like breast cancer: another culprit to watch out for?
Recent findings suggest the involvement of the MET oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor, in the onset and progression of basal-like breast carcinoma. The expression profiles of basal-like tumors - but not those of other breast cancer subtypes - are enriched for gene sets that are coordinately over-represented in transcriptional signatures regulated by Met. Consistently, tissue microarray analyses have revealed that Met immunoreactivity is much higher in basal-like cases of human breast cancer than in other tumor types. Finally, mouse models expressing mutationally activated forms of Met develop a high incidence of mammary tumors, some of which exhibit basal characteristics. The present review summarizes current knowledge on the role and activity of Met in basal-like breast cancer, with a special emphasis on the correlation between this tumor subtype and the cellular hierarchy of the normal mammary gland
Identification of carbon dioxide in an exoplanet atmosphere
Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’)1–3, and thus the formation processes of the primary atmospheres of hot gas giants4–6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7–9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10–12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
Early Release Science of the exoplanetWASP-39b with JWST NIRISS
This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData Availability:
The raw data from this study are publicly available via the Space Science Telescope Institute's
Mikulski Archive for Space Telescopes (https://archive.stsci.edu/). The data which was used to
create all of the figures in this manuscript are freely available on Zenodo and GitHub (Zenodo
Link;https://github.com/afeinstein20/wasp39b_niriss_paper). All additional data is available upon
request.Code Availability:
The following are open-source pipelines written in Python that are available either through the
Python Package Index (PyPI) or GitHub that were used throughout this work:
Eureka! (https://github.com/kevin218/Eureka); nirHiss (https://github.com/afeinstein20/nirhiss);
supreme-SPOON (https://github.com/radicamc/supreme-spoon); transitspectroscopy
(https://github.com/nespinoza/transitspectroscopy/tree/dev); iraclis (https://github.com/uclexoplanets/Iraclis); juliet (https://github.com/nespinoza/juliet); chromatic
(https://github.com/zkbt/chromatic); chromatic_fitting
(https://github.com/catrionamurray/chromatic_fitting); ExoTiC-LD54, 121
(https://github.com/Exo-TiC/ExoTiC-LD); ExoTETHyS122 (https://github.com/uclexoplanets/ExoTETHyS); PICASO88,89 (https://github.com/natashabatalha/picaso); Virga94, 95
(https://github.com/natashabatalha/virga); CHIMERA (https://github.com/mrline/CHIMERA);
PyMultiNest (https://github.com/JohannesBuchner/PyMultiNest); MultiNest
(https://github.com/JohannesBuchner/MultiNest)The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality. Here, we present the transmission spectrum of WASP-39 b obtained using the SOSS mode of the NIRISS instrument on JWST. This spectrum spans 0.6–2.8m in wavelength and reveals multiple water absorption bands, the potassium resonance doublet, and signatures of clouds. The precision and broad wavelength coverage of NIRISS-SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy element enhancement (“metallicity”) of ~10–30x the solar value, a sub-solar carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-gray clouds with inhomogeneous coverage of the planet’s terminator.Leverhulme TrustUK Research and Innovatio
Recommended from our members
Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H
This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData Availability:
The data used in this paper are associated with JWST program ERS 1366 (observation #4) and
are available from the Mikulski Archive for Space Telescopes (https://mast.stsci.edu). Science
data processing version (SDP_VER) 2022_2a generated the uncalibrated data that we
downloaded from MAST. We used JWST Calibration Pipeline software version (CAL_VER)
1.5.3 with modifications described in the text. We used calibration reference data from context
(CRDS_CTX) 0916, except as noted in the text. All the data and models presented in this
publication can be found at 10.5281/zenodo.7185300.Code Availability:
The codes used in this publication to extract, reduce and analyze the data are as follows;
STScI JWST Calibration pipeline45 (https://github.com/spacetelescope/jwst), Eureka!53
(https://eurekadocs.readthedocs.io/en/latest/), ExoTiC-JEDI47 (https://github.com/ExoTiC/ExoTiC-JEDI), juliet71 (https://juliet.readthedocs.io/en/latest/), Tiberius15,49,50,
transitspectroscopy51 (https://github.com/nespinoza/transitspectroscopy). In addition, these
made use of batman65 (http://lkreidberg.github.io/batman/docs/html/index.html), celerite86
(https://celerite.readthedocs.io/en/stable/), chromatic (https://zkbt.github.io/chromatic/),
Dynesty72 (https://dynesty.readthedocs.io/en/stable/index.html), emcee69
(https://emcee.readthedocs.io/en/stable/), exoplanet83 (https://docs.exoplanet.codes/en/latest/),
ExoTEP75–77, ExoTHETyS79 (https://github.com/ucl-exoplanets/ExoTETHyS), ExoTiCISM57 (https://github.com/Exo-TiC/ExoTiC-ISM), ExoTiC-LD58 (https://exoticld.readthedocs.io/en/latest/), george68 (https://george.readthedocs.io/en/latest/) JAX82
(https://jax.readthedocs.io/en/latest/), LMFIT70 (https://lmfit.github.io/lmfit-py/),
Pylightcurve78 (https://github.com/ucl-exoplanets/pylightcurve), Pymc3138
(https://docs.pymc.io/en/v3/index.html) and Starry84 (https://starry.readthedocs.io/en/latest/),
each of which use the standard python libraries astropy139,140, matplotlib141, numpy142,
pandas143, scipy64 and xarray144. The atmospheric models used to fit the data can be found at
ATMO[Tremblin2015,Drummond2016,Goyal2018,Goyal2020]88–91, PHOENIX92–94,
PICASO98,99 (https://natashabatalha.github.io/picaso/), Virga98,107
(https://natashabatalha.github.io/virga/), and gCMCRT115
(https://github.com/ELeeAstro/gCMCRT).Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet’s chemical inventory requires high precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R≈600) transmission spectrum of an exoplanet atmosphere between 3–5 μm covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46×
photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5σ
) and H2O (21.5σ
), and identify SO2 as the source of absorption at 4.1 μ
m (4.8σ
). Best-fit atmospheric models range between 3×
and 10×
solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.Science and Technology Facilities Council (STFC)UKR
- …