69 research outputs found

    Selective blockade of mglu5 metabotropic glutamate receptors is protective against acetaminophen hepatotoxicity in mice

    Get PDF
    BACKGROUND/AIMS: mGlu5 metabotropic glutamate receptor antagonists protect rat hepatocytes against hypoxic death. Here, we have examined whether mGlu5 receptor antagonists are protective against liver damage induced by oxidative stress. METHODS: Toxicity of isolated hepatocytes was induced by tert-butylhydroperoxide (t-BuOOH) after pretreatment with the mGlu5 receptor antagonists, MPEP, SIB-1757 and SIB-1893. The effect of these drugs was also examined in mice challenged with toxic doses of acetaminophen. RESULTS: Addition of tBuOOH (0.5 mM) to isolated hepatocytes induced cell death (70+/-5% at 3 h). Addition of MPEP or SIB-1893 to hepatocytes reduced both the production of reactive oxygen species (ROS) and cell toxicity induced by t-BuOOH (tBuOOH=70+/-5%; tBuOOH+MPEP=57+/-6%; tBuOOH+SIB-1893=40+/-4%). In mice, a single injection of acetaminophen (300 mg/kg, i.p.) induced centrilobular liver necrosis, which was detectable after 24 h. MPEP (20 mg/kg, i.p.) substantially reduced liver necrosis and the production of ROS, although it did not affect the conversion of acetaminophen into the toxic metabolite, N-acetylbenzoquinoneimine. MPEP, SIB-1893 and SIB-1757 (all at 20 mg/kg, i.p.) also reduced the increased expression and activity of liver iNOS induced by acetaminophen. CONCLUSIONS: We conclude that pharmacological blockade of mGlu5 receptors might represent a novel target for the treatment of drug-induced liver damage

    Activation of group III metabotropic glutamate receptors inhibits the production of RANTES in glial cell cultures

    Get PDF
    The chemokine RANTES is critically involved in neuroinflammation and has been implicated in the pathophysiology of multiple sclerosis. We examined the possibility that activation of G-protein-coupled metabotropic glutamate (mGlu) receptors regulates the formation of RANTES in glial cells. A 15 hr exposure of cultured astrocytes to tumor necrosis factor-alpha and interferon-gamma induced a substantial increase in both RANTES mRNA and extracellular RANTES levels. These increases were markedly reduced when astrocytes were coincubated with l-2-amino-4-phosphonobutanoate (l-AP-4), 4-phosphonophenylglycine, or l-serine-O-phosphate, which selectively activate group III mGlu receptor subtypes (i.e., mGlu4, -6, -7, and -8 receptors). Agonists of mGlu1/5 or mGlu2/3 receptors were virtually inactive. Inhibition of RANTES release produced by l-AP-4 was attenuated by the selective group III mGlu receptor antagonist (R,S)-alpha-methylserine-O-phosphate or by pretreatment of the cultures with pertussis toxin. Cultured astrocytes expressed mGlu4 receptors, and the ability of l-AP-4 to inhibit RANTES release was markedly reduced in cultures prepared from mGlu4 knock-out mice. This suggests that activation of mGlu4 receptors negatively modulates the production of RANTES in glial cells. We also examined the effect of l-AP-4 on the development of experimental allergic encephalomyelitis (EAE) in Lewis rats. l-AP-4 was subcutaneously infused for 28 d by an osmotic minipump that released 250 nl/hr of a solution of 250 mm of the drug. Detectable levels of l-AP-4 ( approximately 100 nm) were found in the brain dialysate of EAE rats. Infusion of l-AP-4 did not affect the time at onset and the severity of neurological symptoms but significantly increased the rate of recovery from EAE. In addition, lower levels of RANTES mRNA were found in the cerebellum and spinal cord of EAE rats infused with l-AP-4. These results suggest that pharmacological activation of group III mGlu receptors may be useful in the experimental treatment of neuroinflammatory CNS disorders

    Synaptic Depression Via Mglur1 Positive Allosteric Modulation Suppresses Cue-Induced Cocaine Craving

    Get PDF
    Cue-induced cocaine craving is a major cause of relapse in abstinent addicts. In rats, cue-induced craving progressively intensifies (incubates) during withdrawal from extended-access cocaine self-administration. After ~1 month of withdrawal, incubated craving is mediated by Ca(2+)-permeable AMPA receptors (CP-AMPARs) that accumulate in the nucleus accumbens (NAc). We found that decreased mGluR1 surface expression in the NAc preceded and enabled CP-AMPAR accumulation. Thus, restoring mGluR1 transmission by administering repeated injections of an mGluR1 positive allosteric modulator (PAM) prevented CP-AMPAR accumulation and incubation, whereas blocking mGluR1 transmission at even earlier withdrawal times accelerated CP-AMPAR accumulation. In studies conducted after prolonged withdrawal, when CP-AMPAR levels and cue-induced craving are high, we found that systemic administration of an mGluR1 PAM attenuated the expression of incubated craving by reducing CP-AMPAR transmission in the NAc to control levels. These results suggest a strategy in which recovering addicts could use a systemically active compound to protect against cue-induced relapse

    Metabotropic glutamate receptors as drug targets: what's new?

    No full text
    The question in the title: 'what's new?' has two facets. First, are 'clinical' expectations met with success? Second, is the number of CNS disorders targeted by mGlu drugs still increasing? The answer to the first question is 'no', because development program with promising drugs in the treatment of schizophrenia, Parkinson's disease, and Fragile X syndrome have been discontinued. Nonetheless, we continue to be optimistic because there is still the concrete hope that some of these drugs are beneficial in targeted subpopulations of patients. The answer to the second question is 'yes', because mGlu ligands are promising targets for 'new' disorders such as type-1 spinocerebellar ataxia and absence epilepsy. In addition, the increasing availability of pharmacological tools may push mGlu7 and mGlu8 receptors into the clinical scenario. After almost 30 years from their discovery, mGlu receptors are still alive. © 2014 Elsevier Ltd

    Targeting metabotropic glutamate receptors in the treatment of epilepsy: Rationale and current status

    Get PDF
    Introduction: Several drugs targeting the GABAergic system are used in the treatment of epilepsy, but only one drug targeting glutamate receptors is on the market. This is surprising because an imbalance between excitatory and inhibitory neurotransmission lies at the core of the pathophysiology of epilepsy. One possible explanation is that drug development has been directed towards the synthesis of molecules that inhibit the activity of ionotropic glutamate receptors. These receptors mediate fast excitatory synaptic transmission in the central nervous system (CNS) and their blockade may cause severe adverse effects such as sedation, cognitive impairment and psychotomimetic effects. Metabotropic glutamate (mGlu) receptors are more promising drug targets because these receptors modulate synaptic transmission rather than mediate it. Areas covered: We review the current evidence that links mGlu receptor subtypes to the pathophysiology and experimental treatment of convulsive and absence seizures. Expert Opinion: While mGlu5 receptor negative allosteric modulators have the potential to be protective against convulsive seizures and hyperactivity-induced neurodegeneration, drugs that enhance mGlu5 and mGlu7 receptor function may have beneficial effects in the treatment of absence epilepsy. Evidence related to the other mGlu receptor subtypes is more fragmentary; further investigations are required for an improved understanding of their role in the generation and propagation of seizures

    Metabotropic glutamate receptors as drug targets: what's new?

    No full text
    The question in the title: 'what's new?' has two facets. First, are 'clinical' expectations met with success? Second, is the number of CNS disorders targeted by mGlu drugs still increasing? The answer to the first question is 'no', because development program with promising drugs in the treatment of schizophrenia, Parkinson's disease, and Fragile X syndrome have been discontinued. Nonetheless, we continue to be optimistic because there is still the concrete hope that some of these drugs are beneficial in targeted subpopulations of patients. The answer to the second question is 'yes', because mGlu ligands are promising targets for 'new' disorders such as type-1 spinocerebellar ataxia and absence epilepsy. In addition, the increasing availability of pharmacological tools may push mGlu7 and mGlu8 receptors into the clinical scenario. After almost 30 years from their discovery, mGlu receptors are still alive

    Chemokines affect neuronal degeneration induced by -amyloid or NMDA in culture.

    No full text
    • …
    corecore