1,340 research outputs found
Signal Processing on Digitized Ladar Waveforms for Enhanced Resolution on Surface Edges
Automatic target recognition (ATR) relies on images from various sensors including 3-D imaging ladar. The accuracy of recognizing a target is highly dependent on the number of points on the target. The highest spatial frequencies of a target are located on edges. Therefore, a higher sampling density is desirable at these locations. A ladar receiver captures information on edges by detecting two surfaces when the beam lands partially on one surface and partially on another if the distance between the surfaces is greater than the temporal pulse width of the laser.
In recent years, the ability to digitize the intensity of the light seen at the ladar receiver has led to digitized ladar waveforms that can be post-processed. Post-processing the data allows signal processing techniques to be implemented on stored waveforms. The digitized waveform provides more information than simply a range from the sensor to the target and the intensity of received light. Complex surfaces change the shape of the return.
This thesis exploits this information to enhance the resolution on the edges of targets in the 3-D image or point cloud. First, increased range resolution is obtained by means of deconvolution. This allows two surfaces to be detected even if the distance between them is less than the width of the transmitted pulse. Second, the locations of multiple returns within the ladar beam footprint are computed.
Using deconvolution on the received waveform, an increase from 30 cm to 14 cm in range resolution is reported. Error on these measurements has a 2 cm standard deviation. A method for estimating the width of a 19 cm slot was reported to have a standard deviation of 3.44 cm. A method for angle estimation from a single waveform was developed. This method showed a 1.4° standard deviation on a 75° surface. Processed point clouds show sharper edges than the originals.
The processing method presented in this thesis enhances the resolution on the edges of targets where it is needed. As a result, the high spatial frequency content of edges is better represented. While ATR applications may benefit from this thesis, other applications such as 3-D object modeling may benefit from better representation of edges as well
Phase Variation in the Pulse Profile of SMC X-1
We present the results of timing and spectral analysis of X-ray high state
observations of the high-mass X-ray pulsar SMC X-1 with Chandra, XMM-Newton,
and ROSAT, taken between 1991 and 2001. The source has L_X ~ 3-5 x 10^38
ergs/s, and the spectra can be modeled as a power law plus blackbody with kT_BB
\~ 0.18 keV and reprocessed emission radius R_BB ~ 2 x 10^8 cm, assuming a
distance of 60 kpc to the source. Energy-resolved pulse profiles show several
distinct forms, more than half of which include a second pulse in the soft
profile, previously documented only in hard energies. We also detect
significant variation in the phase shift between hard and soft pulses, as has
recently been reported in Her X-1. We suggest an explanation for the observed
characteristics of the soft pulses in terms of precession of the accretion
disk.Comment: 4 pages, 4 figures, accepted for publication in ApJL; v2 minor
corrections, as will appear in ApJ
Local Invariants and Pairwise Entanglement in Symmetric Multi-qubit System
Pairwise entanglement properties of a symmetric multi-qubit system are
analyzed through a complete set of two-qubit local invariants. Collective
features of entanglement, such as spin squeezing, are expressed in terms of
invariants and a classifcation scheme for pairwise entanglement is proposed.
The invariant criteria given here are shown to be related to the recently
proposed (Phys. Rev. Lett. 95, 120502 (2005)) generalized spin squeezing
inequalities for pairwise entanglement in symmetric multi-qubit states.Comment: 9 pages, 2 figures, REVTEX, Replaced with a published versio
Numerical stability of a new conformal-traceless 3+1 formulation of the Einstein equation
There is strong evidence indicating that the particular form used to recast
the Einstein equation as a 3+1 set of evolution equations has a fundamental
impact on the stability properties of numerical evolutions involving black
holes and/or neutron stars. Presently, the longest lived evolutions have been
obtained using a parametrized hyperbolic system developed by Kidder, Scheel and
Teukolsky or a conformal-traceless system introduced by Baumgarte, Shapiro,
Shibata and Nakamura. We present a new conformal-traceless system. While this
new system has some elements in common with the
Baumgarte-Shapiro-Shibata-Nakamura system, it differs in both the type of
conformal transformations and how the non-linear terms involving the extrinsic
curvature are handled. We show results from 3D numerical evolutions of a
single, non-rotating black hole in which we demonstrate that this new system
yields a significant improvement in the life-time of the simulations.Comment: 7 pages, 2 figure
Boosting jet power in black hole spacetimes
The extraction of rotational energy from a spinning black hole via the
Blandford-Znajek mechanism has long been understood as an important component
in models to explain energetic jets from compact astrophysical sources. Here we
show more generally that the kinetic energy of the black hole, both rotational
and translational, can be tapped, thereby producing even more luminous jets
powered by the interaction of the black hole with its surrounding plasma. We
study the resulting Poynting jet that arises from single boosted black holes
and binary black hole systems. In the latter case, we find that increasing the
orbital angular momenta of the system and/or the spins of the individual black
holes results in an enhanced Poynting flux.Comment: 7 pages, 5 figure
Relativistic MHD with Adaptive Mesh Refinement
This paper presents a new computer code to solve the general relativistic
magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh
refinement (AMR). The fluid equations are solved using a finite difference
Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger.
Hyperbolic divergence cleaning is used to control the
constraint. We present results from three flat space tests, and examine the
accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel
solution. The AMR simulations substantially improve performance while
reproducing the resolution equivalent unigrid simulation results. Finally, we
discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table
Quantifying human post-mortem movement resultant from decomposition processes.
BackgroundPost-mortem movement is highly significant in unexplained death investigations, as body position or the position of remains helps to determine cause and manner of death, as well as potentially the circumstances surrounding death. Therefore, understanding post-mortem movement is of forensic relevance in death scene assessments.PurposeThe aim of this study was to quantify post-mortem movement in anatomical structures of a human donor during decomposition in an Australian environment, an evaluation that has not previously been undertaken.MethodsThe aim was achieved using time-lapse images of a human donor decomposing in order to capture the post-mortem movement over a 16-month period. Megyesi et al.'s [1] total body score system was used to quantify the decomposition of the donor in each image to determine the decomposition stage. ImageJ software was used to determine the distance from static landmarks to anatomical structures of interest in each image to allow for quantification.ResultsEarly decomposition progressed rapidly, and advanced decomposition plateaued at 41 post-mortem interval days with a total body score of 24. The results support the conclusion that post-mortem movement does occur in all limbs of the donor. The anatomical structure that produced the most movement was the right styloid process of the radius, moving a total distance of 51.65 cm. A surprising finding of the study was that most post-mortem movement occurs in the advanced decomposition stage, with the lower limbs being the most active.ConclusionThis study supports that post-mortem movement can be quantified using time-lapse imagery, with results supporting movement in all limbs, a process that was active for the entire study period. An interesting finding was that the decomposition plateaued in the advanced stage with the donor remaining in mummification, and not reaching skeletonization after 16 months in situ. These findings are of significant importance to police in death scene assessments and forensic investigations
Recursive Encoding and Decoding of Noiseless Subsystem and Decoherence Free Subspace
When the environmental disturbace to a quantum system has a wavelength much
larger than the system size, all qubits localized within a small area are under
action of the same error operators. Noiseless subsystem and decoherence free
subspace are known to correct such collective errors. We construct simple
quantum circuits, which implement these collective error correction codes, for
a small number of physical qubits. A single logical qubit is encoded with
and , while two logical qubits are encoded with . The recursive
relations among the subspaces employed in noiseless subsystem and decoherence
free subspace play essential r\^oles in our implementation. The recursive
relations also show that the number of gates required to encode logical
qubits increases linearly in .Comment: 9 pages, 3 figure
Suzaku X-ray Spectra and Pulse Profile Variations during the Superorbital Cycle of LMC X-4
We present results from spectral and temporal analyses of Suzaku and RXTE
observations of the high mass X-ray binary LMC X-4. Using the full 13 years of
available RXTE/ASM data, we apply the ANOVA and Lomb normalized Periodogram
methods to obtain an improved superorbital period measurement of 30.32 +/- 0.04
days. The phase-averaged X-ray spectra from Suzaku observations during the high
state of the superorbital period can be modeled in the 0.6--50 keV band as the
combination of a power-law with Gamma ~ 0.6 and a high-energy cutoff at ~ 25
keV, a blackbody with kT_BB ~ 0.18 keV, and emission lines from Fe K_alpha, O
VIII, and Ne IX (X Lyalpha). Assuming a distance of 50 kpc, The source has
luminosity L_X ~ 3 x 10^38 ergs s^-1 in the 2--50 keV band, and the luminosity
of the soft (blackbody) component is L_BB ~ 1.5 x 10^37 ergs s^-1. The energy
resolved pulse profiles show single-peaked soft (0.5-1 keV) and hard (6-10 keV)
pulses but a more complex pattern of medium (2-10 keV) pulses;
cross-correlation of the hard with the soft pulses shows a phase shift that
varies between observations. We interpret these results in terms of a picture
in which a precessing disk reprocesses the hard X-rays and produces the
observed soft spectral component, as has been suggested for the similar sources
Her X-1 and SMC X-1.Comment: 13 emulateapj pages, 11 figures, 4 tables; accepted for publication
in Ap
- …