1,004 research outputs found

    Statistical Physics of Self-Replication

    Full text link
    Self-replication is a capacity common to every species of living thing, and simple physical intuition dictates that such a process must invariably be fueled by the production of entropy. Here, we undertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount of heat that is produced during a process of self-replication in a system coupled to a thermal bath. We find that the minimum value for the physically allowed rate of heat production is determined by the growth rate, internal entropy, and durability of the replicator, and we discuss the implications of this finding for bacterial cell division, as well as for the pre-biotic emergence of self-replicating nucleic acids.Comment: 4+ pages, 1 figur

    Circuit architecture explains functional similarity of bacterial heat shock responses

    Full text link
    Heat shock response is a stress response to temperature changes and a consecutive increase in amounts of unfolded proteins. To restore homeostasis, cells upregulate chaperones facilitating protein folding by means of transcription factors (TF). We here investigate two heat shock systems: one characteristic to gram negative bacteria, mediated by transcriptional activator sigma32 in E. coli, and another characteristic to gram positive bacteria, mediated by transcriptional repressor HrcA in L. lactis. We construct simple mathematical model of the two systems focusing on the negative feedbacks, where free chaperons suppress sigma32 activation in the former, while they activate HrcA repression in the latter. We demonstrate that both systems, in spite of the difference at the TF regulation level, are capable of showing very similar heat shock dynamics. We find that differences in regulation impose distinct constrains on chaperone-TF binding affinities: the binding constant of free sigma32 to chaperon DnaK, known to be in 100 nM range, set the lower limit of amount of free chaperon that the system can sense the change at the heat shock, while the binding affinity of HrcA to chaperon GroE set the upper limit and have to be rather large extending into the micromolar range.Comment: 17 pages, 5 figure

    Instabilities in complex mixtures with a large number of components

    Full text link
    Inside living cells are complex mixtures of thousands of components. It is hopeless to try to characterise all the individual interactions in these mixtures. Thus, we develop a statistical approach to approximating them, and examine the conditions under which the mixtures phase separate. The approach approximates the matrix of second virial coefficients of the mixture by a random matrix, and determines the stability of the mixture from the spectrum of such random matrices.Comment: 4 pages, uses RevTeX 4.

    Identification of a conditionally essential heat shock protein in Escherichia coli

    Full text link
    Protein D48.5 was recognized as a heat-inducible protein of Escherichia coli during the screening of a group of random, temperature-inducible Mud-Lac fusion mutants. Physiological and genetic analysis demonstrated that (i) the structural gene for this protein, designated htpI, is a member of the o32-dependent heat shock regulon, (ii) at 37[deg]C the synthesis of protein D48.5 is nearly constitutive, increasing slightly with growth rate in media of different composition, and (iii) this protein is essential for growth at high temperature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31386/1/0000299.pd

    The cytoplasm of living cells: A functional mixture of thousands of components

    Full text link
    Inside every living cell is the cytoplasm: a fluid mixture of thousands of different macromolecules, predominantly proteins. This mixture is where most of the biochemistry occurs that enables living cells to function, and it is perhaps the most complex liquid on earth. Here we take an inventory of what is actually in this mixture. Recent genome-sequencing work has given us for the first time at least some information on all of these thousands of components. Having done so we consider two physical phenomena in the cytoplasm: diffusion and possible phase separation. Diffusion is slower in the highly crowded cytoplasm than in dilute solution. Reasonable estimates of this slowdown can be obtained and their consequences explored, for example, monomer-dimer equilibria are established approximately twenty times slower than in a dilute solution. Phase separation in all except exceptional cells appears not to be a problem, despite the high density and so strong protein-protein interactions present. We suggest that this may be partially a byproduct of the evolution of other properties, and partially a result of the huge number of components present.Comment: 11 pages, 1 figure, 1 tabl

    Thermodynamics of Heat Shock Response

    Get PDF
    Production of heat shock proteins are induced when a living cell is exposed to a rise in temperature. The heat shock response of protein DnaK synthesis in E.coli for temperature shifts from temperature T to T plus 7 degrees, respectively to T minus 7 degrees is measured as function of the initial temperature T. We observe a reversed heat shock at low T. The magnitude of the shock increases when one increase the distance to the temperature T0≈23oT_0 \approx 23^o, thereby mimicking the non monotous stability of proteins at low temperature. Further we found that the variation of the heat shock with T quantitatively follows the thermodynamic stability of proteins with temperature. This suggest that stability related to hot as well as cold unfolding of proteins is directly implemented in the biological control of protein folding. We demonstrate that such an implementation is possible in a minimalistic chemical network.Comment: To be published in Physical Review Letter

    Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Get PDF
    Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusions Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors

    Entropic Tension in Crowded Membranes

    Get PDF
    Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function \emph{in vivo}. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2  kBT2\;k_BT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in PLoS Comp. Bio

    Ionization Probabilities through ultra-intense Fields in the extreme Limit

    Get PDF
    We continue our investigation concerning the question of whether atomic bound states begin to stabilize in the ultra-intense field limit. The pulses considered are essentially arbitrary, but we distinguish between three situations. First the total classical momentum transfer is non-vanishing, second not both the total classical momentum transfer and the total classical displacement are vanishing together with the requirement that the potential has a finite number of bound states and third both the total classical momentum transfer and the total classical displacement are vanishing. For the first two cases we rigorously prove, that the ionization probability tends to one when the amplitude of the pulse tends to infinity and the pulse shape remains fixed. In the third case the limit is strictly smaller than one. This case is also related to the high frequency limit considered by Gavrila et al.Comment: 16 pages LateX, 2 figure
    • …
    corecore