148 research outputs found

    Évolution des cancers de l’œsophage : impact de la stratégie thérapeutique

    Get PDF
    PURPOSE: To assess the outcome of esophageal cancer according to therapeutic strategy. PATIENTS AND METHODS: One-hundred and twenty patients with esophageal cancer treated by an association of radiotherapy and chemotherapy and possibly surgery, between 2004 and 2010, were retrospectively studied. The first site of relapse was classified as follows: local (tumour), locoregional (tumour and/or nodal: celiac, mediastinal, sus-clavicular) or metastatic. RESULTS: With a 15.7-months (1.4-62) median follow-up, there were 89 deaths and 79 recurrences. Three types of treatments were performed: 50Gy exclusive chemoradiotherapy (47 patients) or 50 to 65Gy exclusive chemoradiotherapy (44 patients) or chemoradiotherapy followed by surgery (27 patients). The local first relapse was as much frequent as distant relapse (50 patients). With a-5cm margin up and down to the tumour, there was only one nodal relapse. Two-year survival was 39.5% (95% confidence interval [IC]: 30.5-40.8) and relapse-free survival was 26.5% (CI: 18.6-35). Multivariate analysis revealed that treatment type and disease stage had a significant impact on survival, relapse-free survival and locoregional control. Compared to exclusive chemoradiotherapy, surgery improved locoregional control (40.2 versus 8.7 months, P=0.0004) but in a younger population. Despite postoperative mortality, the gain was maintained for distance relapse-free survival (40.2 versus 10 months, P=0.0147) and overall survival (29.3 versus 14.2 months, P=0.0088). Compared to 50Gy chemoradiotherapy, local control was improved if high dose chemoradiotherapy was performed (13.8 versus 7.5 months, P=0.05) but not overall survival (14.0 versus 15.4 months, P=0.24). CONCLUSION: More than one-third relapse is local. Locoregional control is better with high dose chemoradiotherapy. In this study, surgery performed in selected patients only, improved locoregional control, relapse-free disease and overall survival

    Metastatic hepatocellular carcinoma: when surgery and successive palliative treatments lead to remission.

    Get PDF
    Hepatocellular carcinoma (HCC) is the third leading cause of death by cancer worldwide. The prognosis of patients with metastatic HCC remains limited, with an expected median survival lower than 50% at 1 year. Here, we report the case of a 63-year-old man who suffered from a small HCC in the liver and a large unique metastasis in the right adrenal gland. A surgical resection of both lesions was performed. Seven months later, HCC recurred with an isolated right renal metastatic lymphadenopathy and a high alpha-fetoprotein level. HCC was brought under control by sorafenib; the alpha-fetoprotein level was greatly reduced but remained moderately elevated and stable over 2 years after the onset of chemotherapy. Additional external radiotherapy on the metastatic lymphadenopathy led to a normalization of the alpha-fetoprotein level and discontinuation of sorafenib treatment. One year after the end of radiotherapy, a second isolated metastasis occurred in the right lung. This tumor was surgically removed. Twenty-one months after this second surgical procedure, i.e., more than 5.5 years after the initial diagnosis of metastatic HCC, the patient was asymptomatic and tumor free

    The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Get PDF
    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard–Oeschger (D–O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D–O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73–15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U∕230Th, optically stimulated luminescence (OSL), 40Ar∕39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867

    The ACER pollen and charcoal database: A global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Get PDF
    This is the final version of the article. Available from Copernicus Publications via the DOI in this record.Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15ka) with a temporal resolution better than 1000years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft Access™ at https://doi.org/10.1594/PANGAEA.870867.The members of the ACER project wish to thank the QUEST-DESIRE (UK and France) bilateral project, the INQUA International Focus Group ACER and the INTIMATE-COST action for funding a suite of workshops to compile the ACER pollen and charcoal database and the workshop on ACER chronology that allow setting the basis for harmonizing the chronologies. Josué M. Polanco-Martinez was funded by a Basque Government postdoctoral fellowship (POS_2015_1_0006) and Sandy P. Harrison by the ERC Advanced Grant GC2.0: unlocking the past for a clearer future

    Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years

    Get PDF
    Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial–interglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (nee European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60% from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).Peer reviewe

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959
    corecore