2,002 research outputs found

    The mechanics of fibre-reinforced sand

    Get PDF
    Fibres can be an effective means of reinforcing soils. This paper presents data from laboratory triaxial tests on quartzitic sand reinforced with polypropylene fibres. By keeping the studied composite consistent throughout the study (host sand and fibre characteristics kept constant), it has been possible to develop a framework of behaviour for the sand-fibre material, which provides a solid base for future research on fibre-reinforced soils. Data from previous work and from new tests have been analysed within the Critical State framework, that is in terms of normal compression line, critical state line and state boundary surface.published_or_final_versio

    The Development, Implementation And Enduring Impact Of John Dewey's Philosophy Of History

    Get PDF
    John Dewey was an American philosopher, psychologist, and leading figure in the progressive education movement that took place in the late nineteenth and early twentieth centuries. While many are familiar with Dewey’s educational philosophy and its aim to promote and improve America’s democratic experience, few are familiar with the integral role that Dewey’s philosophy of history played in his perceived need for a reconstruction in and of philosophy, in the development of his philosophy of education, and in the implementation of his philosophy of education at the Laboratory School. The focus of this thesis centers on this gap in our understanding of Dewey’s philosophy of history and its implementation at the Laboratory School. Through a four-fold inquiry, I argue that at the heart of Dewey’s approach to philosophy and education lay an intelligent understanding of past human growth, progress, and intellectual development with an overarching emphasis on knowledge as an experimental, experiential, and reconstructive process rather than as a product. This paper examines Dewey’s unique history of philosophy, the development of his philosophy of history, the application of his ideas at the Laboratory School, and the trajectory of his philosophies of history and education over the last one hundred years

    ARES+MOOG - a practical overview of an EW method to derive stellar parameters

    Full text link
    The goal of this document is to describe the important practical aspects in the use of an Equivalent Width (EW) method for the derivation of spectroscopic stellar parameters. A general description of the fundamental steps composing any EW method is given, together with possible differences that may be found in different methods used in the literature. Then ARES+MOOG is then used as an example where each step of the method is described in detail. A special focus is given for the specific steps of this method, namely the use of a differential analysis to define the atomic data for the adopted line list, the automatic EW determinations, and the way to find the best parameters at the end of the procedure. Finally, a practical tutorial is given, where we focus on simple exercises useful to illustrate and explain the dependence of the abundances with the assumed stellar parameters. The interdependences are described and a clear procedure is given to find the "final" stellar parameters.Comment: 15 pages, 4 figures, accepted for publication as a chapter in "Determination of Atmospheric Parameters of B, A, F and G Type Stars", Springer (2014), eds. E. Niemczura, B. Smalley, W. Pyc

    An extrasolar planetary system with three Neptune-mass planets

    Get PDF
    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 AU (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.Comment: 17 pages, 3 figures, preprint of the paper published in Nature on May 18, 200

    Dietary patterns of lactating women in central North Carolina evaluated using three validated assessment tools.

    Get PDF
    Background: During lactation, there is an increased maternal need for almost all nutrients. It has been reported that maternal status of some nutrients (i.e. vitamin A, C and DHA) can affect breast milk composition. Data about dietary patterns of lactating women in the United States are scarce and only a small number of studies evaluated micronutrient intake. Objectives: The primary objective of this pilot study is to describe the dietary patterns of lactating women in central North Carolina using established and emerging dietary assessment tools, with a particular focus on fruits and vegetables (F&V). A secondary objective is to explore the relationship between maternal intake of fruits, vegetables, and vitamin A, with breast milk vitamin A and carotenoid concentrations. Methods: In this cross-sectional study, 40 lactating women residing in central North Carolina were recruited between July 2018 and April 2019. We collected dietary information using three assessment methods: 24-hour Food Record, REAP dietary screener, and Veggie Meter™, a non-invasive biomarker of F&V intake that has been validated in non-lactating individuals. A single breast milk sample was also collected. Results: Thirty-one participants (78%) were flagged for referral to a Registered Dietitian based on their REAP scores. There was a significant correlation between the Food Record F&V servings and the Veggie Meter™ for subjects who reported that the 24-hour food record was reflective of their usual intake (n=9; p=0.031; R=0.71). The relationship of breast milk beta-carotene and the Veggie Meter™ scores was also statistically significant (n=12; p=0.022; R=0.65). Conclusion: F&V intake in lactating women is often below recommendations. The Veggie Meter™ scores correlated positively with breast milk beta-carotene and F&V intake which can provide an objective method of assessing F&V intake in lactating women in future studies

    Enhanced lithium depletion in Sun-like stars with orbiting planets

    Full text link
    The surface abundance of lithium on the Sun is 140 times less than protosolar, yet the temperature at the base of the surface convective zone is not hot enough to burn Li. A large range of Li abundances in solar type stars of the same age, mass and metallicity is observed, but theoretically difficult to understand. An earlier suggestion that Li is more depleted in stars with planets was weakened by the lack of a proper comparison sample of stars without detected planets. Here we report Li abundances for an unbiased sample of solar-analogue stars with and without detected planets. We find that the planet-bearing stars have less than 1 per cent of the primordial Li abundance, while about 50 per cent of the solar analogues without detected planets have on average 10 times more Li. The presence of planets may increase the amount of mixing and deepen the convective zone to such an extent that the Li can be burned.Comment: 13 pages, 2 figure

    Detectability of shape deformation in short-period exoplanets

    Get PDF
    Context Short-period planets are influenced by the extreme tidal forces of their parent stars. These forces deform the planets causing them to attain nonspherical shapes. The nonspherical shapes, modeled here as triaxial ellipsoids, can have an impact on the observed transit light-curves and the parameters derived for these planets. Aims We investigate the detectability of tidal deformation in short-period planets from their transit light curves and the instrumental precision needed. We also aim to show how detecting planet deformation allows us to obtain an observational estimate of the second fluid Love number from the light curve, which provides valuable information about the internal structure of the planet. Methods We adopted a model to calculate the shape of a planet due to the external potentials acting on it and used this model to modify the ellc transit tool. We used the modified ellc to generate the transit light curve for a deformed planet. Our model is parameterized by the Love number; therefore, for a given light curve we can derive the value of the Love number that best matches the observations. Results We simulated the known cases of WASP-103b and WASP-121b which are expected to be highly deformed. Our analyses show that instrumental precision ≤50 ppm min−1 is required to reliably estimate the Love number and detect tidal deformation. This precision can be achieved for WASP-103b in ∼40 transits using the Hubble Space Telescope and in ∼300 transits using the forthcoming CHEOPS instrument. However, fewer transits will be required for short-period planets that may be found around bright stars in the TESS and PLATO survey missions. The unprecedented precisions expected from PLATO and JWST will permit the detection of shape deformation with a single transit observation. However, the effects of instrumental and astrophysical noise must be considered as they can increase the number of transits required to reach the 50 ppm min−1 detection limit. We also show that improper modeling of limb darkening can act to bury signals related to the shape of the planet, thereby leading us to infer sphericity for a deformed planet. Accurate determination of the limb darkening coefficients is therefore required to confirm planet deformation

    Using zeta-potential measurements to quantify peptide partition to lipid membranes

    Get PDF
    © The Author(s) 2011. This article is published with open access at Springerlink.com.Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.Many cellular phenomena occur on the biomembranes. There are plenty of molecules (natural or xenobiotics) that interact directly or partially with the cell membrane. Biomolecules, such as several peptides (e.g., antimicrobial peptides) and proteins, exert their effects at the cell membrane level. This feature makes necessary investigating their interactions with lipids to clarify their mechanisms of action and side effects necessary. The determination of molecular lipid/water partition constants (Kp) is frequently used to quantify the extension of the interaction. The determination of this parameter has been achieved by using different methodologies, such as UV-Vis absorption spectrophotometry, fluorescence spectroscopy and ζ-potential measurements. In this work, we derived and tested a mathematical model to determine the Kp from ζ-potential data. The values obtained with this method were compared with those obtained by fluorescence spectroscopy, which is a regular technique used to quantify the interaction of intrinsically fluorescent peptides with selected biomembrane model systems. Two antimicrobial peptides (BP100 and pepR) were evaluated by this new method. The results obtained by this new methodology show that ζ-potential is a powerful technique to quantify peptide/lipid interactions of a wide variety of charged molecules, overcoming some of the limitations inherent to other techniques, such as the need for fluorescent labeling.This work was partially supported by project PTDC/QUI/ 69937/2006 from Fundação para a Ciência e Tecnologia-Ministério da Ciência, Tecnologia e Ensino Superior (FCT-MCTES, Portugal), and by Fundação Calouste Gulbenkian (Portugal). JMF and MMD also thank FCT-MCTES for grants IMM/BT/37-2010 and SFRH/BD/41750/2007, respectively

    The ₉₅RGD₉₇ sequence on the A alpha chain of fibrinogen is essential for binding to its erythrocyte receptor

    Get PDF
    Background: Erythrocyte aggregation, a cardiovascular risk factor, is increased by high plasma fibrinogen levels. Here, the effect of different fibrinogen mutations on binding to its human erythrocyte receptor was assessed in order to identify the interaction sites. Methods: Three fibrinogen variants were tested, specifically mutated in their putative integrin recognition sites on the Aα chain (mutants D97E, D574E and D97E/D574E) and compared with wild-type fibrinogen. Results: Atomic force microscopy-based force spectroscopy measurements showed a significant decrease both on the fibrinogen–erythrocyte binding force and on its frequency for fibrinogen with the D97E mutation, indicating that the corresponding arginine–glycine–aspartate sequence (residues 95–97) is involved in this interaction, and supporting that the fibrinogen receptor on erythrocytes has a β3 subunit. Changes in the fibrin clot network structure obtained with the D97E mutant were observed by scanning electron microscopy. Conclusion: These findings may lead to innovative perspectives on the development of new therapeutic approaches to overcome the risks of fibrinogen-driven erythrocyte hyperaggregation

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
    corecore