97 research outputs found
Fabrication and Properties of Porphyrin Nano- and Micro-particles with Novel Morphology
New types of porphyrin nano- and micro-particles composed of J- and H-heteroaggregates were prepared by electrostatic self-assembly of two oppositely charged porphyrins, tetrakis(4-trimethylammoniophenyl)porphyrin (H2TAPP4+) and tetrakis(4-sulfonatophenyl)porphyrin cobalt(II) (CoTPPS4−), in aqueous solutions. Transmission electron microscopy (TEM) images showed novel morphology and size distribution of porphyrin particles fabricated under different experimental conditions. The assembly process of the nano- and micro-particles was monitored by UV–Vis spectra. Fluorescence spectra and UV–Vis spectra provided optical information on the formation of the nano- and micro-particles. Cyclic voltammograms of the porphyrin particles indicated that the electron gain and loss of the H2TAPP4+ion were restrained, and the electron transfer of the CoTPPS4−ion was promoted in the J- and H-type porphyrin heteroaggregates within the particles. The stability and constitution of the nano- and micro-particles were confirmed by UV-light irradiation, heat-treatment, and pH and ionic strength changes. Photoelectrochemical measurements showed that the photoelectron transfer of TiO2modified with the particles was more efficient than that of TiO2sensitized by either monomers. The photoelectronic and photocatalytic properties of the products indicated that the pyramidal or spherical configuration of the nano- and micro-particles was favorable for the absorption and transfer of the energy. It can be found that TiO2sensitized by the porphyrin nano- and micro-particles exhibits significant improvement in energy conversion and photocatalytic activity with reference to pure TiO2
Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus
Several techniques are under development to diagnose oesophageal adenocarcinoma at an earlier stage. We have demonstrated the potential of Raman spectroscopy, an optical diagnostic technique, for the identification and classification of malignant changes. However, there is no clear recognition of the biochemical changes that distinguish between the different stages of disease. Our aim is to understand these changes through Raman mapping studies. Raman spectral mapping was used to analyse 20-μm sections of tissue from 29 snap-frozen oesophageal biopsies. Contiguous haematoxylin and eosin sections were reviewed by a consultant pathologist. Principal component analysis was used to identify the major differences between the spectra across each map. Pseudocolour score maps were generated and the peaks of corresponding loads identified enabling visualisation of the biochemical changes associated with malignancy. Changes were noted in the distribution of DNA, glycogen, lipids and proteins. The mean spectra obtained from selected regions demonstrate increased levels of glycogen in the squamous area compared with increased DNA levels in the abnormal region. Raman spectroscopy is a highly sensitive and specific technique for demonstration of biochemical changes in the carcinogenesis of Barrett's oesophagus. There is potential for in vivo application for real-time endoscopic optical diagnosis
Surface-enhanced Raman spectroscopy study of 4-ATP on gold nanoparticles for basal cell carcinoma fingerprint detection
The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4ATP-coated gold nanoparticles attached to skin tissue ex vivo
Granular Assembly of α-Synuclein Leading to the Accelerated Amyloid Fibril Formation with Shear Stress
α-Synuclein participates in the Lewy body formation of Parkinson's disease. Elucidation of the underlying molecular mechanism of the amyloid fibril formation is crucial not only to develop a controlling strategy toward the disease, but also to apply the protein fibrils for future biotechnology. Discernable homogeneous granules of α-synuclein composed of approximately 11 monomers in average were isolated in the middle of a lag phase during the in vitro fibrillation process. They were demonstrated to experience almost instantaneous fibrillation during a single 12-min centrifugal membrane-filtration at 14,000×g. The granular assembly leading to the drastically accelerated fibril formation was demonstrated to be a result of the physical influence of shear force imposed on the preformed granular structures by either centrifugal filtration or rheometer. Structural rearrangement of the preformed oligomomeric structures is attributable for the suprastructure formation in which the granules act as a growing unit for the fibril formation. To parallel the prevailing notion of nucleation-dependent amyloidosis, we propose a double-concerted fibrillation model as one of the mechanisms to explain the in vitro fibrillation of α-synuclein, in which two consecutive concerted associations of monomers and subsequent oligomeric granular species are responsible for the eventual amyloid fibril formation
Selenomethionine Incorporation into Amyloid Sequences Regulates Fibrillogenesis and Toxicity
The capacity of a polypeptide chain to engage in an amyloid formation process and cause a conformational disease is contained in its sequence. Some of the sequences undergoing fibrillation contain critical methionine (Met) residues which in vivo can be synthetically substituted by selenomethionine (SeM) and alter their properties
Genome-Wide Identification of Molecular Pathways and Biomarkers in Response to Arsenic Exposure in Zebrafish Liver
10.1371/journal.pone.0068737PLoS ONE87-POLN
Withanolides and related steroids
Since the isolation of the first withanolides in the mid-1960s, over 600 new members of this group of compounds have been described, with most from genera of the plant family Solanaceae. The basic structure of withaferin A, a C28 ergostane with a modified side chain forming a δ-lactone between carbons 22 and 26, was considered for many years the basic template for the withanolides. Nowadays, a considerable number of related structures are also considered part of the withanolide class; among them are those containing γ-lactones in the side chain that have come to be at least as common as the δ-lactones. The reduced versions (γ and δ-lactols) are also known. Further structural variations include modified skeletons (including C27 compounds), aromatic rings and additional rings, which may coexist in a single plant species. Seasonal and geographical variations have also been described in the concentration levels and types of withanolides that may occur, especially in the Jaborosa and Salpichroa genera, and biogenetic relationships among those withanolides may be inferred from the structural variations detected. Withania is the parent genus of the withanolides and a special section is devoted to the new structures isolated from species in this genus. Following this, all other new structures are grouped by structural types.
Many withanolides have shown a variety of interesting biological activities ranging from antitumor, cytotoxic and potential cancer chemopreventive effects, to feeding deterrence for several insects as well as selective phytotoxicity towards monocotyledoneous and dicotyledoneous species. Trypanocidal, leishmanicidal, antibacterial, and antifungal activities have also been reported. A comprehensive description of the different activities and their significance has been included in this chapter. The final section is devoted to chemotaxonomic implications of withanolide distribution within the Solanaceae.
Overall, this chapter covers the advances in the chemistry and biology of withanolides over the last 16 years.Fil: Misico, Rosana Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); ArgentinaFil: Nicotra, V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Oberti, Juan Carlos María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad
Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; ArgentinaFil: Gil, Roberto Ricardo. University Of Carnegie Mellon; Estados UnidosFil: Burton, Gerardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); Argentin
- …