74 research outputs found
Tyrosine kinase inhibitor SU6668 represses chondrosarcoma growth via antiangiogenesis in vivo
BACKGROUND: As chondrosarcomas are resistant to chemotherapy and ionizing radiation, therapeutic options are limited. Radical surgery often cannot be performed. Therefore, additional therapies such as antiangiogenesis represent a promising strategy for overcoming limitations in chondrosarcoma therapy. There is strong experimental evidence that SU6668, an inhibitor of the angiogenic tyrosine kinases Flk-1/KDR, PDGFRbeta and FGFR1 can induce growth inhibition of various primary tumors. However, the effectiveness of SU6668 on malignant primary bone tumors such as chondrosarcomas has been rarely investigated. Therefore, the aim of this study was to investigate the effects of SU6668 on chondrosarcoma growth, angiogenesis and microcirculation in vivo. METHODS: In 10 male severe combined immunodeficient (SCID) mice, pieces of SW1353 chondrosarcomas were implanted into a cranial window preparation where the calvaria serves as the site for the orthotopic implantation of bone tumors. From day 7 after tumor implantation, five animals were treated with SU6668 (250 mg/kg body weight, s.c.) at intervals of 48 hours (SU6668), and five animals with the equivalent amount of the CMC-based vehicle (Control). Angiogenesis, microcirculation, and growth of SW 1353 tumors were analyzed by means of intravital microscopy. RESULTS: SU6668 induced a growth arrest of chondrosarcomas within 7 days after the initiation of the treatment. Compared to Controls, SU6668 decreased functional vessel density and tumor size, respectively, by 37% and 53% on day 28 after tumor implantation. The time course of the experiments demonstrated that the impact on angiogenesis preceded the anti-tumor effect. Histological and immunohistochemical results confirmed the intravital microscopy findings. CONCLUSION: SU6668 is a potent inhibitor of chondrosarcoma tumor growth in vivo. This effect appears to be induced by the antiangiogenic effects of SU6668, which are mediated by the inhibition of the key angiogenic receptor tyrosine kinases Flk-1/KDR, PDGFRbeta and FGFR1. The experimental data obtained provide rationale to further develop the strategy of the use of the angiogenesis inhibitor SU6668 in the treatment of chondrosarcomas in addition to established therapies such as surgery
Aortic root surgery in septuagenarians: impact of different surgical techniques
<p>Abstract</p> <p>Background</p> <p>To evaluate the impact and safety of different surgical techniques for aortic root replacement (ARR) on early and late morbidity and mortality in septuagenarians undergoing ARR.</p> <p>Methods</p> <p>Ninety-five patients (73.8 Β± 3.2 years) were operated and divided into three groups according to the aortic root procedure; MECH-group (n = 51) patients with a mechanical composite graft, BIO-group (n = 22) patients with a customized biological composite graft, and REIMPL-group (n = 22) patients with a valve sparing aortic root reimplantation (David I). In 42.1% (40/95) of these patients the aortic arch was replaced. Follow-up was completed in 95.2% (79/83) of in-hospital survivors.</p> <p>Results</p> <p>Hospital mortality was 12.6% (12/95) in the entire population (MECH. 15.7% (8/51), BIO 19.7% (4/22), REIMPL 0% (0/22); p = 0.004). Two patients died intraoperatively. The most frequent postoperative complications were prolonged mechanical ventilation ((>48 h) in 16.8% (16/93) (MECH. 7% (7/51), BIO 36.4% (8/22), REIMPL 4.5% (1/22); p = 0.013) and rethoracotomy for postoperative bleeding in 12.6% (12/95) (MECH. 12% (6/51), BIO 22.7% (5/22), REIMPL 4.5% (1/22); p = 0.19). Nineteen late deaths (22.9%) (19/83) (MECH 34.8% (15/43), BIO 16.7% (3/18), REIMPL 4.5% (1/22); p = 0.012) occurred during a mean follow-up of 41 Β± 42 months (MECH 48 Β± 48 months, BIO 25 Β± 37 months, REIMPL 40 Β± 28 months, p = 0.028). Postoperative NYHA class decreased significantly (p = 0.017) and performance status (p = 0.027) increased for the entire group compared to preoperative values.</p> <p>Conclusion</p> <p>Our data indicate that valve sparing aortic root reimplantation is safe and effective in septuagenarians, and is associated with low early and late morbidity and mortality.</p
Patterns of Early Gut Colonization Shape Future Immune Responses of the Host
The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system
A randomized, phase III trial of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in first-line treatment of metastatic colorectal cancer: The AIO KRK 0110 Trial/ML22011 Trial
<p>Abstract</p> <p>Background</p> <p>Several randomized trials have indicated that combination chemotherapy applied in metastatic colorectal cancer (mCRC) does not significantly improve overall survival when compared to the sequential use of cytotoxic agents (CAIRO, MRC Focus, FFCD 2000-05). The present study investigates the question whether this statement holds true also for bevacizumab-based first-line treatment including escalation- and de-escalation strategies.</p> <p>Methods/Design</p> <p>The AIO KRK 0110/ML22011 trial is a two-arm, multicenter, open-label randomized phase III trial comparing the efficacy and safety of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in the first-line treatment of metastatic colorectal cancer. Patients with unresectable metastatic colorectal cancer, Eastern Cooperative Oncology Group (ECOG) performance status 0-1, will be assigned in a 1:1 ratio to receive either capecitabine 1250 mg/m<sup>2 </sup>bid for 14d (d1-14) plus bevacizumab 7.5 mg/kg (d1) q3w (Arm A) or capecitabine 800 mg/m<sup>2 </sup>BID for 14d (d1-14), irinotecan 200 mg/m<sup>2 </sup>(d1) and bevacizumab 7.5 mg/kg (d1) q3w (Arm B). Patients included into this trial are required to consent to the analysis of tumour tissue and blood for translational investigations. In Arm A, treatment escalation from Cape-Bev to CAPIRI-Bev is recommended in case of progressive disease (PD). In Arm B, de-escalation from CAPIRI-Bev to Cape-Bev is possible after 6 months of treatment or in case of irinotecan-associated toxicity. Re-escalation to CAPIRI-Bev after PD is possible. The primary endpoint is time to failure of strategy (TFS). Secondary endpoints are overall response rate (ORR), overall survival, progression-free survival, safety and quality of life.</p> <p>Conclusion</p> <p>The AIO KRK 0110 trial is designed for patients with disseminated, but asymptomatic mCRC who are not potential candidates for surgical resection of metastasis. Two bevacizumab-based strategies are compared: one starting as single-agent chemotherapy (Cape-Bev) allowing escalation to CAPIRI-Bev and another starting with combination chemotherapy (CAPIRI-Bev) and allowing de-escalation to Cape-Bev and subsequent re-escalation if necessary.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT01249638">NCT01249638</a></p> <p>EudraCT-No.: 2009-013099-38</p
The FGFR4-G388R Polymorphism Promotes Mitochondrial STAT3 Serine Phosphorylation to Facilitate Pituitary Growth Hormone Cell Tumorigenesis
Pituitary tumors are common intracranial neoplasms, yet few germline abnormalities have been implicated in their pathogenesis. Here we show that a single nucleotide germline polymorphism (SNP) substituting an arginine (R) for glycine (G) in the FGFR4 transmembrane domain can alter pituitary cell growth and hormone production. Compared with FGFR4-G388 mammosomatotroph cells that support prolactin (PRL) production, FGFR4-R388 cells express predominantly growth hormone (GH). Growth promoting effects of FGFR4-R388 as evidenced by enhanced colony formation was ascribed to Src activation and mitochondrial serine phosphorylation of STAT3 (pS-STAT3). In contrast, diminished pY-STAT3 mediated by FGFR4-R388 relieved GH inhibition leading to hormone excess. Using a knock-in mouse model, we demonstrate the ability of FGFR4-R385 to promote GH pituitary tumorigenesis. In patients with acromegaly, pituitary tumor size correlated with hormone excess in the presence of the FGFR4-R388 but not the FGFR4-G388 allele. Our findings establish a new role for the FGFR4-G388R polymorphism in pituitary oncogenesis, providing a rationale for targeting Src and STAT3 in the personalized treatment of associated disorders
Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA
Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest that it does not play a major role in killing this fungus. Instead, NETs may have a fungistatic effect and may prevent further spreading
dSETDB1 and SU(VAR)3β9 Sequentially Function during Germline-Stem Cell Differentiation in Drosophila melanogaster
Germline-stem cells (GSCs) produce gametes and are thus true βimmortal stem cellsβ. In Drosophila ovaries, GSCs divide asymmetrically to produce daughter GSCs and cystoblasts, and the latter differentiate into germline cysts. Here we show that the histone-lysine methyltransferase dSETDB1, located in pericentric heterochromatin, catalyzes H3-K9 trimethylation in GSCs and their immediate descendants. As germline cysts differentiate into egg chambers, the dSETDB1 function is gradually taken over by another H3-K9-specific methyltransferase, SU(VAR)3β9. Loss-of-function mutations in dsetdb1 or Su(var)3β9 abolish both H3K9me3 and heterochromatin protein-1 (HP1) signals from the anterior germarium and the developing egg chambers, respectively, and cause localization of H3K9me3 away from DNA-dense regions in most posterior germarium cells. These results indicate that dSETDB1 and SU(VAR)3β9 act together with distinct roles during oogenesis, with dsetdb1 being of particular importance due to its GSC-specific function and more severe mutant phenotype
Role of mprF1 and mprF2 in the Pathogenicity of Enterococcus faecalis
Aujourd hui, Enterococcus faecalis est considΓ©rΓ© comme l un des plus importants agents pathogΓ¨nes causant des maladies nosocomiales. En raison de sa rΓ©sistance innΓ©e et acquise aux antibiotiques, l identification de nouvelles cibles pour le traitement de cette bactΓ©rie est une grande prioritΓ©. Le facteur Multiple Peptide RΓ©sistance (MprF), qui a Γ©tΓ© dΓ©crit en premier chez Staphylococcus aureus, modifie le phosphatidylglycΓ©rol avec de la lysine et rΓ©duit ainsi la charge nΓ©gative de l enveloppe cellulaire. Ceci a comme consΓ©quence d augmenter la rΓ©sistance aux peptides antimicrobiens cationiques (PAC). Deux gΓ¨nes paralogues putatifs (mprF1 et mprF2) ont Γ©tΓ© identifiΓ©s chez E. faecalis par recherche BLAST en utilisant le gΓ¨ne dΓ©crit chez S. aureus. Une caractΓ©risation de ces deux gΓ¨nes d E. faecalis ainsi que des mΓ©canismes conduisant Γ une rΓ©sistance aux PAC, pourrait aider Γ dΓ©velopper des nouvelles stratΓ©gies thΓ©rapeutiques contre ce pathogΓ¨ne. Deux mutants de dΓ©lΓ©tion et un double mutant ont Γ©tΓ© construits par recombinaison homologue chez E. faecalis. L analyse des phospholipides des membranes cytoplasmiques des deux mutants mprF1 et mprF2 par chromatographie sur couche mince a montrΓ© que seule l inactivation de mprF2 inhibe la synthΓ¨se de trois amino-phosphatidlyglycΓ©rol distincts (comme la Lysine-PG, l Alanine-PG et l Arginine-PG). De plus, le mutant mprF2 est Γ©galement plus sensible aux PAC que la souche sauvage. La capacitΓ© de formation d un biofilm est gΓ©nΓ©ralement considΓ©rΓ©e comme un facteur important de virulence, ce qui est Γ©galement le cas pour les entΓ©rocoques. Le mutant mprF2 montre une capacitΓ© accrue dans ce phΓ©nomΓ¨ne. Ceci semble Γͺtre du Γ une augmentation de la concentration d ADN extracellulaire dans le biofilm formΓ© par ce mutant. Curieusement, cette augmentation est indΓ©pendante d une autolyse. Le mutant mprF2 est Γ©galement plus rΓ©sistant Γ l opsonophagocytose. Cependant, le gΓ¨ne mprF2 ne joue aucun rΓ΄le dans les bactΓ©riΓ©mies de souris et les endocardites de rats.En revanche, aucun phΓ©notype n a Γ©tΓ© trouvΓ© pour un mutant mprF1 jusqu Γ prΓ©sent. Cette mutation ne modifie ni la synthΓ¨se de l aminoacyl-PG en condition de laboratoire ni la rΓ©sistance aux PAC et Γ l opsonophagocytose. Par consΓ©quent, il semble que mprF2 soit le seul gΓ¨ne mprF fonctionnel chez E. faecalis. NΓ©anmoins, contrairement Γ d autres bactΓ©ries, mprF2 ne semble pas Γͺtre un facteur de virulence majeur pour cette espΓ¨ce.Enterococcus faecalis is regarded nowadays as one of the most important nosocomial pathogens. Due to its innate and acquired resistance to antibiotics, identification of new targets for antimicrobial treatment of E. faecalis is a high priority. The multiple peptides resistance factor (MprF), which was first described in Staphylococcus aureus, modifies phosphatidylglycerol with lysine and reduces the negative charge of the membrane, thus increasing resistance to cationic antimicrobial peptides (CAMPs). Two putative mprF paralogs (mprF1 and mprF2) were identified in E. faecalis by Blast search using the well-described S. aureus gene as a lead. A better understanding of these two genes and mechanisms leads to enterococcal resistance to CAMPs might help designing therapeutic strategies against this bacteria. Two single deletion mutants and double mutant in E. faecalis were created by homologues recombination. Analysis of cell membrane phospholipids from both mutants by thin-layer chromatography showed that inactivation of mprF2 abolished the synthesis of three distinct amino-phosphatidylglycerol (mostly likely Lysin-PG, Alanine-PG and Argine-PG). The CAMPs testing assay demonstrated that the deletion mutant of mprF2 was more susceptible to CAMPs than the wild type. Biofilm formation is usually regarded as a virulence factor which provides an important way for enterococci to cause infections. Inactivation of mprF2 led to increase the biofilm formation which we showed that it was due to the accumulation of eDNA in the biofilm, but the release of eDNA is independent from autolysis. The mprF2 mutant was resistance to killing by opsonophagocytosis more than wild type. However, the mprF2 gene plays no role in bacteremia in mice and rat endocarditis. Our results showed that non polar effect mprF1 mutant does not affect in the synthesis of aminoacyl-PG in the laboratory condition. It also has no effect on susceptible to CAMPs, opsonic killing and autolysis. Therefore, it seems that mprF2 is the only functional mprF gene in E. faecalis in the laboratory condition. Unlike mprF found in other bacteria, mprF does not seem to be a major virulence factor in enterococci.CAEN-BU Sciences et STAPS (141182103) / SudocSudocFranceF
Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia
Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer
The C-Terminus of Histone H2B Is Involved in Chromatin Compaction Specifically at Telomeres, Independently of Its Monoubiquitylation at Lysine 123
Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the Ξ±C helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved
- β¦