108 research outputs found

    Seismic Velocity Structure in and around the Japanese Island Arc Derived from Seismic Tomography Including NIED MOWLAS Hi-net and S-net Data

    Get PDF
    Japanese Islands are composed of four plates, with two oceanic plates subducting beneath the two continental plates. In 2016 the National Research Institute for Earth Science and Disaster Resilience (NIED) Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench (S-net) started seismic observation of the offshore Hokkaido to Boso region in the Pacific Ocean, and Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) was transferred to NIED. We add the NIED S-net and DONET datasets to NIED high-sensitivity seismograph network (Hi-net) and full range seismograph network (F-net) datasets used in the previous study and obtain the three-dimensional seismic velocity structure beneath the Pacific Ocean as well as Japanese Islands. NIED S-net data dramatically improve the resolution beneath the Pacific Ocean at depths of 10–20 km because the seismic stations are located above the earthquakes and on the east side of the Japan Trench. We find a NS high-Vp zone at depths of 20–30 km. The 2018 Eastern Iburi earthquake occurred below the northern part of this high-V zone. The coseismic slip plane of the 2011 Tohoku-oki earthquake has low Vp/Vs, but its large slip region has high Vp. The broad low-Vp/Vs region may play a role in large earthquake occurrence

    Cortical Regions Encoding Hardness Perception Modulated by Visual Information Identified by Functional Magnetic Resonance Imaging With Multivoxel Pattern Analysis

    Get PDF
    Recent studies have revealed that hardness perception is determined by visual information along with the haptic input. This study investigated the cortical regions involved in hardness perception modulated by visual information using functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA). Twenty-two healthy participants were enrolled. They were required to place their left and right hands at the front and back, respectively, of a mirror attached to a platform placed above them while lying in a magnetic resonance scanner. In conditions SFT, MED, and HRD, one of three polyurethane foam pads of varying hardness (soft, medium, and hard, respectively) was presented to the left hand in a given trial, while only the medium pad was presented to the right hand in all trials. MED was defined as the control condition, because the visual and haptic information was congruent. During the scan, the participants were required to push the pad with the both hands while observing the reflection of the left hand and estimate the hardness of the pad perceived by the right (hidden) hand based on magnitude estimation. Behavioral results showed that the perceived hardness was significantly biased toward softer or harder in >73% of the trials in conditions SFT and HRD; we designated these trials as visually modulated (SFTvm and HRDvm, respectively). The accuracy map was calculated individually for each of the pair-wise comparisons of (SFTvm vs. MED), (HRDvm vs. MED), and (SFTvm vs. HRDvm) by a searchlight MVPA, and the cortical regions encoding the perceived hardness with visual modulation were identified by conjunction of the three accuracy maps in group analysis. The cluster was observed in the right sensory motor cortex, left anterior intraparietal sulcus (aIPS), bilateral parietal operculum (PO), and occipito-temporal cortex (OTC). Together with previous findings on such cortical regions, we conclude that the visual information of finger movements processed in the OTC may be integrated with haptic input in the left aIPS, and the subjective hardness perceived by the right hand with visual modulation may be processed in the cortical network between the left PO and aIPS

    Petascale turbulence simulation using a highly parallel fast multipole method on GPUs

    Full text link
    This paper reports large-scale direct numerical simulations of homogeneous-isotropic fluid turbulence, achieving sustained performance of 1.08 petaflop/s on gpu hardware using single precision. The simulations use a vortex particle method to solve the Navier-Stokes equations, with a highly parallel fast multipole method (FMM) as numerical engine, and match the current record in mesh size for this application, a cube of 4096^3 computational points solved with a spectral method. The standard numerical approach used in this field is the pseudo-spectral method, relying on the FFT algorithm as numerical engine. The particle-based simulations presented in this paper quantitatively match the kinetic energy spectrum obtained with a pseudo-spectral method, using a trusted code. In terms of parallel performance, weak scaling results show the fmm-based vortex method achieving 74% parallel efficiency on 4096 processes (one gpu per mpi process, 3 gpus per node of the TSUBAME-2.0 system). The FFT-based spectral method is able to achieve just 14% parallel efficiency on the same number of mpi processes (using only cpu cores), due to the all-to-all communication pattern of the FFT algorithm. The calculation time for one time step was 108 seconds for the vortex method and 154 seconds for the spectral method, under these conditions. Computing with 69 billion particles, this work exceeds by an order of magnitude the largest vortex method calculations to date

    Size-selective encapsulation property of unimolecular reverse micelle consisting of hyperbranched D-glucan core and L-leucine ethyl ether shell

    Get PDF
    金沢大学理工研究域自然システム学系The synthesis of a unimolecular reverse micelle (3) consisting of hyper-branched D-glucan as the core and L-leucine ethyl ester as the shell was accomplished through the carbamation reaction of the hyperbranched D-glucan (1) with the N-carbonyl L-leucine ethyl ester (2) in pyridine at 100 °C. The polymer 3 was soluble in a large variety of organic solvents, such as methanol, acetone, chloroform, and ethyl acetate, and insoluble in water, which remarkably differed from the solubility of 1. The solubilities of 3 were also changed by the substitution degrees of the L-leucine moiety. The encapsulation ability of 3 toward water-soluble dyes has been investigated. These results indicated that 3 was a unimolecular reverse micelle with an encapsulation ability toward hydrophilic dye molecules. In addition, 3 showed an molecular size-selective encapsulation ability. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Age- and sex-specific associations between sarcopenia severity and poor cognitive function among community-dwelling older adults in Japan: The IRIDE Cohort Study

    Get PDF
    IntroductionThis study examined whether the association between sarcopenia severity and cognitive function differed according to sex and age in community-dwelling older adults in Japan.MethodsThis is a cross-sectional study of older adults (age ≥ 65 years) consisting of five regional cohorts integrated as the Integrated Research Initiative for Living Well with Dementia (IRIDE) Cohort Study. Sarcopenia severity was determined based on the Asian Working Group for Sarcopenia 2019, which assessed grip strength, walking speed, and skeletal muscle mass index. Poor cognitive function was defined as a Mini-Mental State Examination score of ≤ 23. Odds ratios (ORs) and 95% confidence intervals (CIs) for poor cognitive function were calculated by sex and age group (65–74 and ≥75 years) using binomial logistic regression models, which were adjusted for age, educational attainment, history of non-communicable diseases, smoking and drinking habits, living alone, frequency of going outdoors, exercise habits, and depressive symptom.ResultsOf the 8,180 participants, 6,426 (1,157 men aged 65–74 and 1,063 men aged 75 or older; 2,281 women aged 65–74 and 1,925 women aged 75 or older) were analyzed. The prevalence ratio of sarcopenia and severe sarcopenia were 309 (13.9%) and 92 (4.1%) among men and 559 (13.3%) and 166 (3.7%) among women, respectively. A total of 127 (5.8%) men and 161 (3.9%) women had a poor cognitive function. Setting non-sarcopenia as a reference, the adjusted ORs (95% CI) of poor cognitive function were 2.20 (1.54, 3.15) for sarcopenia and 3.56 (2.20, 5.71) for severe sarcopenia. A similar trend was observed in analyses stratified by sex and age, with linear associations (P for trend <0.05) in both categories. Furthermore, there was a significant interaction (P < 0.05) between sex and sarcopenia severity, indicating a stronger linear association of sarcopenia severity with poor cognitive function in women compared with men.Discussion and conclusionSarcopenia severity was linearly associated with poor cognitive function in adults aged ≥ 65 years, with a stronger association in women compared with men

    Investigation by Imaging Mass Spectrometry of Biomarker Candidates for Aging in the Hair Cortex

    Get PDF
    BACKGROUND: Human hair is one of the essential components that define appearance and is a useful source of samples for non-invasive biomonitoring. We describe a novel application of imaging mass spectrometry (IMS) of hair biomolecules for advanced molecular characterization and a better understanding of hair aging. As a cosmetic and biomedical application, molecules whose levels in hair altered with aging were comprehensively investigated. METHODS: Human hair was collected from 15 young (20±5 years old) and 15 older (50±5 years old) volunteers. Matrix-free laser desorption/ionization IMS was used to visualize molecular distribution in the hair sections. Hair-specific ions displaying a significant difference in the intensities between the 2 age groups were extracted as candidate markers for aging. Tissue localization of the molecules and alterations in their levels in the cortex and medulla in the young and old groups were determined. RESULTS: Among the 31 molecules detected specifically in hair sections, 2--one at m/z 153.00, tentatively assigned to be dihydrouracil, and the other at m/z 207.04, identified to be 3,4-dihydroxymandelic acid (DHMA)--exhibited a higher signal intensity in the young group than in the old, and 1 molecule at m/z 164.00, presumed to be O-phosphoethanolamine, displayed a higher intensity in the old group. Among the 3, putative O-phosphoethanolamine showed a cortex-specific distribution. The 3 molecules in cortex presented the same pattern of alteration in signal intensity with aging, whereas those in medulla did not exhibit significant alteration. CONCLUSION: Three molecules whose levels in hair altered with age were extracted. While they are all possible markers for aging, putative dihydrouracil and DHMA, are also suspected to play a role in maintaining hair properties and could be targets for cosmetic supplementation. Mapping of ion localization in hair by IMS is a powerful method to extract biomolecules in specified regions and determine their tissue distribution

    水耕栽培野菜の抗酸化活性とミネラル含有量の測定

    Get PDF
    Many kinds of minerals and antioxidants are contained in foods. However, correlation between antioxidant activities and mineral contents have not been discussed in detail. In this study, therefore, we examined antioxidant activities of two typical hydroponic lettuces (i.e., furyl lettuce and green leaf lettuce) and their mineral contents. Antioxidant activities were measured by using Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid) as a typical water-soluble model compound of vitamin E. Mineral contents were measured simultaneously for multiple elements using Inductively Coupled Plasma- Atomic Emission Spectrometry (ICP-AES).As a result, antioxidant activities of both lettuces at the leaf part and green leaf lettuce were higher than those at the stem part. In the same manner, mineral contents of those contents at the leaf part were also larger than the stem part. Thus, we found for the first time appreciable correlations between the mineral contents and the antioxidants activities in such hydroponic vegetables

    First-principles Analysis of Stearic Acid Adsorption on Calcite (104) Surface

    Get PDF
    Calcium carbonate nanoparticles are often surface-treated with organic compounds such as fatty acids. The activated calcium carbonates not only exhibit excellent application properties, but also can be applied as eco-friendly inorganic-organic hybrid materials. However, the microscopic adsorption structure of organic compounds on calcite surfaces is not yet well understood. In this study, we performed computational simulations based on density functional theory to investigate adsorption states of stearic acid (SA) on a calcite (104) surface. Based on the first-principles ionic relaxation and molecular dynamics simulations for several types of SA−SA and calcite−SA bonding models, a SA bilayer model on the calcite (104) surface is predicted to be a possible stable structure. The proposed structure model is well consistent with the experimentally predicted adsorption mechanism of SA on the calcite (104) surface
    corecore