31 research outputs found

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Serotonergic Contribution to Boys' Behavioral Regulation

    Get PDF
    Animal and human adult studies reveal a contribution of serotonin to behavior regulation. Whether these findings apply to children is unclear. The present study investigated serotonergic functioning in boys with a history of behavior regulation difficulties through a double-blind, acute tryptophan supplementation procedure.Participants were 23 boys (age 10 years) with a history of elevated physical aggression, recruited from a community sample. Eleven were given a chocolate milkshake supplemented with 500 mg tryptophan, and 12 received a chocolate milkshake without tryptophan. Boys engaged in a competitive reaction time game against a fictitious opponent, which assessed response to provocation, impulsivity, perspective taking, and sharing. Impulsivity was further assessed through a Go/No-Go paradigm. A computerized emotion recognition task and a staged instrumental help incident were also administered.Boys, regardless of group, responded similarly to high provocation by the fictitious opponent. However, boys in the tryptophan group adjusted their level of responding optimally as a function of the level of provocation, whereas boys in the control group significantly decreased their level of responding towards the end of the competition. Boys in the tryptophan group tended to show greater perspective taking, tended to better distinguish facial expressions of fear and happiness, and tended to provide greater instrumental help to the experimenter.The present study provides initial evidence for the feasibility of acute tryptophan supplementation in children and some effect of tryptophan supplementation on children's behaviors. Further studies are warranted to explore the potential impact of increased serotonergic functioning on boys' dominant and affiliative behaviors

    Radiological dose rates to marine fish from the Fukushima Daiichi Accident: the first three years across the North Pacific.

    No full text
    A more complete record is emerging of radionuclide measurements in fish tissue, sediment, and seawater samples from near the Fukushima Daiichi Nuclear Power Plant (FDNPP) and across the Pacific Ocean. Our analysis of publicly available data indicates the dose rates to the most impacted fish species near the FDNPP (median 1.1 mGy d–1, 2012–2014 data) have remained above benchmark levels for potential dose effects at least three years longer than was indicated by previous, data-limited evaluations. Dose rates from 134,137Cs were highest in demersal species with sediment-associated food chains and feeding behaviors. In addition to 134,137Cs, the radionuclide 90Sr was estimated to contribute up to approximately one-half of the total 2013 dose rate to fish near the FDNPP. Mesopelagic fish 100–200 km east of the FDNPP, coastal fish in the Aleutian Islands (3300 km), and trans-Pacific migratory species all had increased dose rates as a consequence of the FDNPP accident, but their total dose rates remained dominated by background radionuclides. A hypothetical human consumer of 50 kg of fish, gathered 3 km from the FDNPP in 2013, would have received a total committed effective dose of approximately 0.95 mSv a–1 from combined FDNPP and ambient radionuclides, of which 0.13 mSv a–1 (14%) was solely from the FDNPP radionuclides and below the 1 mSv a–1 benchmark for public exposure. © 2014 American Chemical Societ

    Estimating the biological half-life for radionuclides in homoeothermic vertebrates: a simplified allometric approach

    Get PDF
    The application of allometric, or mass-dependent, relationships within radioecology has increased with the evolution of models to predict the exposure of organisms other than man. Allometry presents a method of addressing the lack of empirical data on radionuclide transfer and metabolism for the many radionuclide–species combinations which may need to be considered. However, sufficient data across a range of species with different masses are required to establish allometric relationships and this is not always available. Here, an alternative allometric approach to predict the biological half-life of radionuclides in homoeothermic vertebrates which does not require such data is derived. Biological half-life values are predicted for four radionuclides and compared to available data for a range of species. All predictions were within a factor of five of the observed values when the model was parameterised appropriate to the feeding strategy of each species. This is an encouraging level of agreement given that the allometric models are intended to provide broad approximations rather than exact values. However, reasons why some radionuclides deviate from what would be anticipated from Kleiber’s law need to be determined to allow a more complete exploitation of the potential of allometric extrapolation within radioecological models

    Transfer parameters for ICRP reference animals and plants collected from a forest ecosystem

    Get PDF
    The International Commission on Radiological Protection (ICRP) have suggested the identification of a series of terrestrial, marine and freshwater sites from which samples of each Reference animal and plant (RAP) could be systematically collected and analysed. We describe the first such study in which six of the eight terrestrial RAPs, and associated soil samples, were collected from a site located in a managed coniferous forestry plantation in north-west England. Adult life stages of species representing six of the terrestrial RAPs (Wild grass, Pine tree, Deer, Rat, Earthworm and Bee) were sampled and analysed to determine concentrations of 60 elements and gammaemitting radionuclides. The resultant data have been used to derive concentration ratios (CRwo-soil) relating element/ radionuclide concentrations in the RAPs to those in soil. This paper presents the first-reported transfer parameters for a number of the RAP–element combinations. Where possible, the derived CRwo-soil values are compared with the ICRPs-recommended values and any appreciable differences discussed

    From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection

    Get PDF
    The objective of this paper is to present the results of discussions at a workshop held as part of the International Congress of Radiation Research (Environmental Health stream) in Manchester UK, 2019. The main objective of the workshop was to provide a platform for radioecologists to engage with radiobiologists to address major questions around developing an Ecosystem approach in radioecology and radiation protection of the environment. The aim was to establish a critical framework to guide research that would permit integration of a pan-ecosystem approach into radiation protection guidelines and regulation for the environment. The conclusions were that the interaction between radioecologists and radiobiologists is useful in particular in addressing field versus laboratory issues where there are issues and challenges in designing good field experiments and a need to cross validate field data against laboratory data and vice versa. Other main conclusions were that there is a need to appreciate wider issues in ecology to design good approaches for an ecosystems approach in radioecology and that with the capture of 'Big Data', novel tools such as machine learning can now be applied to help with the complex issues involved in developing an ecosystem approach

    Infralimbic and dorsal raphé microinjection of the 5-HT1B receptor agonist CP-93,129: attenuation of aggressive behavior in CFW male mice

    No full text
    RATIONALE: Aggressive behavior and impaired impulse control have been associated with dysregulations in the serotonergic system and with impaired functioning of the prefrontal cortex. 5-HT(1B) receptors have been shown to specifically modulate several types of offensive aggression. OBJECTIVE: To characterize the relative importance of 2 populations of 5-HT(1B) receptors in the dorsal raphé nucleus (DRN) and infralimbic cortex (ILC) in the modulation of aggressive behavior. METHODS: Male CFW mice were conditioned on a fixed-ratio 5 schedule of reinforcement to self-administer a 6% (w/v) alcohol solution. Mice repeatedly engaged in 5 min aggressive confrontations until aggressive behavior stabilized. Next, a cannula was implanted into either the DRN or the ILC. After recovery, mice were tested for aggression after self-administration of either 1.0 g/kg alcohol or water prior to a microinjection of the 5-HT(1B) agonist, CP-93,129 (0–1.0 µg/infusion). RESULTS: In both the DRN and ILC, CP-93,129 reduced aggressive behaviors after both water and alcohol self-administration. Intra-raphé CP-93,129 dose-dependently reduced both aggressive and locomotor behaviors. However, the anti-aggressive effects of intra-cortical CP-93,129 were behaviorally specific. CONCLUSIONS: These findings highlight the importance of the serotonergic system in the modulation of aggression and suggest that the behaviorally specific effects of 5-HT(1B) receptor agonists are regionally selective. 5-HT(1B) receptors in a medial subregion of the prefrontal cortex, the ILC, appear to be critically involved in the attenuation of species-typical levels of aggression

    Meat lipids

    No full text
    corecore