7 research outputs found

    Impact of plants on the diversity and activity of methylotrophs in soil

    Get PDF
    Background Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. Results Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. Conclusion In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle

    The Expanded Diversity of Methylophilaceae from Lake Washington through Cultivation and Genomic Sequencing of Novel Ecotypes

    Get PDF
    We describe five novel Methylophilaceae ecotypes from a single ecological niche in Lake Washington, USA, and compare them to three previously described ecotypes, in terms of their phenotype and genome sequence divergence. Two of the ecotypes appear to represent novel genera within the Methylophilaceae. Genome-based metabolic reconstruction highlights metabolic versatility of Methylophilaceae with respect to methylotrophy and nitrogen metabolism, different ecotypes possessing different combinations of primary substrate oxidation systems (MxaFI-type methanol dehydrogenase versus XoxF-type methanol dehydrogenase; methylamine dehydrogenase versus N-methylglutamate pathway) and different potentials for denitrification (assimilatory versus respiratory nitrate reduction). By comparing pairs of closely related genomes, we uncover that site-specific recombination is the main means of genomic evolution and strain divergence, including lateral transfers of genes from both closely- and distantly related taxa. The new ecotypes and the new genomes contribute significantly to our understanding of the extent of genomic and metabolic diversity among organisms of the same family inhabiting the same ecological niche. These organisms also provide novel experimental models for studying the complexity and the function of the microbial communities active in methylotrophy

    Rare earth elements (REE) in biology and medicine

    Get PDF
    AbstractThis survey reports on topics that were presented at the workshop on "Challenges with Rare Earth Elements. The Periodic Table at work for new Science & Technology" hold at the Academia dei Lincei in November 2019. The herein reported materials refer to presentations dealing with studies and applications of rare earth elements (REE) in several areas of Biology and Medicine. All together they show the tremendous impact REE have in relevant fields of living systems and highlight, on one hand, the still existing knowledge gap for an in-depth understanding of their function in natural systems as well as the very important role they already have in providing innovative scientific and technological solutions in a number of bio-medical areas and in fields related to the assessment of the origin of food and on their manufacturing processes. On the basis of the to-date achievements one expects that new initiatives will bring, in a not too far future, to a dramatic increase of our understanding of the REE involvement in living organisms as well as a ramp-up in the exploitation of the peculiar properties of REE for the design of novel applications in diagnostic procedures and in the set-up of powerful medical devices. This scenario calls the governmental authorities for new responsibilities to guarantee a continuous availability of REE to industry and research labs together with providing support to activities devoted to their recovery/recycling

    Methylotrophs in natural habitats: current insights through metagenomics

    No full text

    PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference

    No full text
    corecore