2,555 research outputs found

    Quasi-Stationary Distributions for Models of Heterogeneous Catalysis

    Full text link
    We construct the quasi-stationary (QS) distribution for two models of heterogeneous catalysis having two absorbing states: the ZGB model for the oxidation of CO, and a version with noninstantaneous reactions. Using a mean-field-like approximation, we study the quasi-stationary surface coverages, moment ratios and the lifetime of the QS state. We also derive an improved, consistent one-site mean-field theory for the ZGB model.Comment: 18 pages, 13 figure

    Finite Element Time-Domain Body-of-Revolution Maxwell Solver based on Discrete Exterior Calculus

    Full text link
    We present a finite-element time-domain (FETD) Maxwell solver for the analysis of body-of-revolution (BOR) geometries based on discrete exterior calculus (DEC) of differential forms and transformation optics (TO) concepts. We explore TO principles to map the original 3-D BOR problem to a 2-D one in the meridian plane based on a Cartesian coordinate system where the cylindrical metric is fully embedded into the constitutive properties of an effective inhomogeneous and anisotropic medium that fills the domain. The proposed solver uses a TE/TM field decomposition and an appropriate set of DEC-based basis functions on an irregular grid discretizing the meridian plane. A symplectic time discretization based on a leap-frog scheme is applied to obtain the full-discrete marching-on-time algorithm. We validate the algorithm by comparing the numerical results against analytical solutions for resonant fields in cylindrical cavities and against pseudo-analytical solutions for fields radiated by cylindrically symmetric antennas in layered media. We also illustrate the application of the algorithm for a particle-in-cell (PIC) simulation of beam-wave interactions inside a high-power backward-wave oscillator.Comment: 42 pages, 19 figure

    A closed-loop model of the respiratory system: Focus on hypercapnia and active expiration

    Get PDF
    Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model can be used for simulation of closed-loop control of breathing under different conditions including respiratory disorders

    Evaluating the effect of data standardization and validation on patient matching accuracy

    Get PDF
    Objective This study evaluated the degree to which recommendations for demographic data standardization improve patient matching accuracy using real-world datasets. Materials and Methods We used 4 manually reviewed datasets, containing a random selection of matches and nonmatches. Matching datasets included health information exchange (HIE) records, public health registry records, Social Security Death Master File records, and newborn screening records. Standardized fields including last name, telephone number, social security number, date of birth, and address. Matching performance was evaluated using 4 metrics: sensitivity, specificity, positive predictive value, and accuracy. Results Standardizing address was independently associated with improved matching sensitivities for both the public health and HIE datasets of approximately 0.6% and 4.5%. Overall accuracy was unchanged for both datasets due to reduced match specificity. We observed no similar impact for address standardization in the death master file dataset. Standardizing last name yielded improved matching sensitivity of 0.6% for the HIE dataset, while overall accuracy remained the same due to a decrease in match specificity. We noted no similar impact for other datasets. Standardizing other individual fields (telephone, date of birth, or social security number) showed no matching improvements. As standardizing address and last name improved matching sensitivity, we examined the combined effect of address and last name standardization, which showed that standardization improved sensitivity from 81.3% to 91.6% for the HIE dataset. Conclusions Data standardization can improve match rates, thus ensuring that patients and clinicians have better data on which to make decisions to enhance care quality and safety

    Topology-Aware Latent Diffusion for 3D Shape Generation

    Full text link
    We introduce a new generative model that combines latent diffusion with persistent homology to create 3D shapes with high diversity, with a special emphasis on their topological characteristics. Our method involves representing 3D shapes as implicit fields, then employing persistent homology to extract topological features, including Betti numbers and persistence diagrams. The shape generation process consists of two steps. Initially, we employ a transformer-based autoencoding module to embed the implicit representation of each 3D shape into a set of latent vectors. Subsequently, we navigate through the learned latent space via a diffusion model. By strategically incorporating topological features into the diffusion process, our generative module is able to produce a richer variety of 3D shapes with different topological structures. Furthermore, our framework is flexible, supporting generation tasks constrained by a variety of inputs, including sparse and partial point clouds, as well as sketches. By modifying the persistence diagrams, we can alter the topology of the shapes generated from these input modalities.Comment: 16 pages, 9 figure

    Unilateral Psoriasis in a Woman with Ipsilateral Post-Mastectomy Lymphedema

    Get PDF
    Psoriasis is a multi-factorial disease with various clinical manifestations. We present a case of unilateral psoriasis associated with ipsilateral lymphedema that developed after mastectomy for breast cancer. A 42-year-old Korean woman was referred to our clinic with a 1-month history of multiple erythematous scaly patches on the right arm, back, and breast and was diagnosed with psoriasis by a skin biopsy. Three years previously, she had been diagnosed with breast cancer (T1N2), underwent a right quadrantectomy and axillary lymph node dissection, and completed adjuvant chemotherapy followed by high-dose adjuvant radiotherapy. She had started rehabilitation therapy on the right arm for secondary lymphedema 30 months previously. Because of the long interval between radiation and psoriasis, we speculated that changes in the local milieu caused by the lymphedema might be a causative factor. We hereby report a rare case of unilateral psoriasis following post-mastectomy lymphedema

    A fluorescence-switchable luminogen in the solid state: a sensitive and selective sensor for the fast "turn-on" detection of primary amine gas

    Get PDF
    The emission of pyrrole-substituted benzoic acid can be repeatedly switched between the dark and bright states in the solid state by chemical fuming and heating processes, enabling it to work as a rapid sensitive fluorescent sensor for primary amine detection

    The Effects of Warming and Nitrogen Addition on Soil Nitrogen Cycling in a Temperate Grassland, Northeastern China

    Get PDF
    Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem
    corecore