259 research outputs found

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets

    Development of a specific fluorescent phage endolysin for in situ detection of Clostridium species associated with cheese spoilage

    Get PDF
    Late blowing defect (LBD) is a major cause of spoilage in cheeses, caused by the growth of Clostridium spp. in the cheese matrix. We investigated the application of CTP1L, a bacteriophage endolysin active against Clostridium tyrobutyricum, and its enzymatically active and cell wall-binding domains (EAD and CBD) attached to green fluorescent protein (GFP) to detect dairy-related Clostridium species by fluorescence microscopy. GFP-CTP1L and GFP-CBD demonstrated specificity for Clostridium spp. by labelling 15 and 17 of 20 Clostridium strains, respectively, but neither bound to other members of the cheese microbiota. However, GFP-EAD did not label any Clostridium strain tested. Unexpectedly, GFP-CTP1L and GFP-CBD were also able to bind to clostridial spores. In addition, GFP-CBD allowed us to visualize the vegetative cells of C. tyrobutyricum directly in the matrix of a LBD cheese. Site-directed mutants of GFP-CTP1L and GFP-CBD were made to examine the amino acids involved in binding and oligomer formation. Oligomerization was not essential for binding, but specific mutations in the CBD which affected oligomer formation also affected binding and lytic activity. We conclude that GFP-CTP1L and GFP-CBD could be good biomarkers for rapid detection of Clostridium spores in milk, so measures can be taken for the prevention of LBD in cheese, and also provide effective tools to study the development of Clostridium populations during cheese ripening

    Opioid use and associated factors in 1676 patients with inflammatory bowel disease: a multicentre quality improvement project

    Get PDF
    Objective Despite its association with poorer outcomes, opioid use in inflammatory bowel disease (IBD) is not well characterised in the UK. We aimed to examine the extent of opioid use, the associated factors and the use of mitigation techniques such as pain-service review and opioid weaning plans among individuals with IBD. Methods Data were collected from consecutive patients attending IBD outpatient appointments at 12 UK hospitals. A predefined questionnaire was used to collect data including patient demographics, IBD history, opioid use in the past year (>2 weeks) and opioid-use mitigation techniques. Additionally, consecutive IBD-related hospital stays leading up to July 2019 were reviewed with data collected regarding opioid use at admission, discharge and follow-up as well as details of the admission indication. Results In 1352 outpatients, 12% had used opioids within the past 12 months. Over half of these individuals were taking opioids for non-IBD pain and less than half had undergone an attempted opioid wean. In 324 hospitalised patients, 27% were prescribed opioids at discharge from hospital. At 12 months postdischarge, 11% were using opioids. Factors associated with opioid use in both cohorts included female sex, Crohn’s disease and previous surgery. Conclusions 1 in 10 patients with IBD attending outpatient appointments were opioid exposed in the past year while a quarter of inpatients were discharged with opioids, and 11% continued to use opioids 12 months after discharge. IBD services should aim to identify patients exposed to opioids, reduce exposure where possible and facilitate access to alternative pain management approaches

    Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families.</p> <p>Results</p> <p>In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll <it>a/b</it>-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping.</p> <p>Conclusions</p> <p>The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in diatoms with complex plastids, could represent an important and previously missing link in the evolution of the extended LHC protein superfamily.</p

    Alteration of Proteins and Pigments Influence the Function of Photosystem I under Iron Deficiency from Chlamydomonas reinhardtii

    Get PDF
    BACKGROUND: Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS: 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS: Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency

    Intracranial injection of dengue virus induces interferon stimulated genes and CD8(+) T cell infiltration by sphingosine kinase 1 independent pathways

    Get PDF
    We have previously reported that the absence of sphingosine kinase 1 (SK1) affects both dengue virus (DENV) infection and innate immune responses in vitro. Here we aimed to define SK1-dependancy of DENV-induced disease and the associated innate responses in vivo. The lack of a reliable mouse model with a fully competent interferon response for DENV infection is a challenge, and here we use an experimental model of DENV infection in the brain of immunocompetent mice. Intracranial injection of DENV-2 into C57BL/6 mice induced body weight loss and neurological symptoms which was associated with a high level of DENV RNA in the brain. Body weight loss and DENV RNA level tended to be greater in SK1-/- compared with wildtype (WT) mice. Brain infection with DENV-2 is associated with the induction of interferon-β (IFN-β) and IFN-stimulated gene (ISG) expression including viperin, Ifi27l2a, IRF7, and CXCL10 without any significant differences between WT and SK1-/- mice. The SK2 and sphingosine-1-phosphate (S1P) levels in the brain were unchanged by DENV infection or the lack of SK1. Histological analysis demonstrated the presence of a cellular infiltrate in DENV-infected brain with a significant increase in mRNA for CD8 but not CD4 suggesting this infiltrate is likely CD8+ but not CD4+ T-lymphocytes. This increase in T-cell infiltration was not affected by the lack of SK1. Overall, DENV-infection in the brain induces IFN and T-cell responses but does not influence the SK/S1P axis. In contrast to our observations in vitro, SK1 has no major influence on these responses following DENV-infection in the mouse brain.Wisam H. Al-Shujairi, Jennifer N. Clarke, Lorena T. Davies, Mohammed Alsharifi, Stuart M. Pitson, Jillian M. Car
    corecore