111 research outputs found

    Temperature induced Lifshitz transition in WTe2

    Get PDF
    We use ultra-high resolution, tunable, VUV laser-based, angle-resolved photoemission spectroscopy (ARPES) and temperature and field dependent resistivity and thermoelectric power (TEP) measurements to study the electronic properties of WTe2, a compound that manifests exceptionally large, temperature dependent magnetoresistance. The temperature dependence of the TEP shows a change of slope at T=175 K and the Kohler rule breaks down above 70-140 K range. The Fermi surface consists of two electron pockets and two pairs of hole pockets along the X-Gamma-X direction. Upon increase of temperature from 40K, the hole pockets gradually sink below the chemical potential. Like BaFe2As2, WTe2 has clear and substantial changes in its Fermi surface driven by modest changes in temperature. In WTe2, this leads to a rare example of temperature induced Lifshitz transition, associated with the complete disappearance of the hole pockets. These dramatic changes of the electronic structure naturally explain unusual features of the transport data.Comment: 5 pages, 3 figure

    A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In silico </it>analyses provide valuable insight into the biology of obligately intracellular pathogens and symbionts with small genomes. There is a particular opportunity to apply systems-level tools developed for the model bacterium <it>Escherichia coli </it>to study the evolution and function of symbiotic bacteria which are metabolically specialised to overproduce specific nutrients for their host and, remarkably, have a gene complement that is a subset of the <it>E. coli </it>genome.</p> <p>Results</p> <p>We have reconstructed and analysed the metabolic network of the Îł-proteobacterium <it>Buchnera aphidicola </it>(symbiont of the pea aphid) as a model for using systems-level approaches to discover key traits of symbionts with small genomes. The metabolic network is extremely fragile with > 90% of the reactions essential for viability <it>in silico</it>; and it is structured so that the bacterium cannot grow without producing the essential amino acid, histidine, which is released to the insect host. Further, the amount of essential amino acid produced by the bacterium <it>in silico </it>can be controlled by host supply of carbon and nitrogen substrates.</p> <p>Conclusion</p> <p>This systems-level analysis predicts that the fragility of the bacterial metabolic network renders the symbiotic bacterium intolerant of drastic environmental fluctuations, whilst the coupling of histidine production to growth prevents the bacterium from exploiting host nutrients without reciprocating. These metabolic traits underpin the sustained nutritional contribution of <it>B. aphidicola </it>to the host and, together with the impact of host-derived substrates on the profile of nutrients released from the bacteria, point to a dominant role of the host in controlling the symbiosis.</p

    Key mechanisms governing resolution of lung inflammation

    Get PDF
    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    The Concise Guide to PHARMACOLOGY 2013/14: overview.

    No full text
    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates

    Azelnidipine

    No full text

    Biochemical characterization of enterovirus 71 3D RNA polymerase.

    No full text
    International audienceAn unusual enterovirus 71 (EV71) epidemic has begun in China since 2008. EV71 RNA polymerases (3D(pol)) showed polymerase activity with an Mn(2+). Little activity was detected with Co(2+), and no activity was detected with Mg(2+), Ca(2+), Cu(2+), Ni(2+), Cd(2+), or Zn(2+). It is a primer-dependent polymerase, and the enzyme functioned with both di- and 10-nucleotide RNA primers. DNA primer, dT15, increased primer activity, similar to other enterovirus 3D(pol). However, EV71 3D(pol) initiated de novo transcription with a poly(C) template and genome RNA. Its RNA binding activity was weak. Terminal nucleotidyl transferase and reverse transcriptase activity were not detected. The Km and Vmax for EV71 3D(pol) were calculated from classic Lineweaver-Burk plots. The Km values were 2.35±0.05 (ATP), 5.40±0.93 (CTP), 1.12±0.10 (GTP) and 2.81±0.31 (UTP), and the Vmax values were 0.00078±0.00005/min (ATP), 0.011±0.0017/min (CTP), 0.050±0.0043/min (GTP) and 0.0027±0.0005/min (UTP). The Km of EV71 3D(pol) was similar to that of foot and mouth disease virus and rhinovirus. Polymerase activity of BrCr-TR strain and a strain from a clinical isolate in Beijing, 2008 were similar, indicating the potential for 3D(pol) as an antiviral drug target
    • 

    corecore