5 research outputs found
Cosmological evolution of general scalar fields in a brane-world cosmology
We study the cosmology of a general scalar field and barotropic fluid during
the early stage of a brane-world where the Friedmann constraint is dominated by
the square of the energy density. Assuming both the scalar field and fluid are
confined to the brane, we find a range of behaviour depending on the form of
the potential. Generalising an approach developed for a standard Friedmann
cosmology, in \cite{delaMacorra:1999ff}, we show that the potential dependence
can be described through a parameter , where is the 5-dimensional Planck mass, is
the Hubble parameter and . For the case where
asymptotes to zero, we show that the solution exhibits stable
inflationary behaviour. On the other hand if it approaches a finite constant,
then . For
asymptotically, we find examples where it does so both with and without
oscillating. In the latter case, the barotropic fluid dominates the scalar
filed asymptotically. Finally we point out an interesting duality which leads
to identical evolution equations in the high energy dominated regime
and the low energy dominated regime.Comment: 10 pages, 3 figure
Attractive fluorineΒ·Β·Β·fluorine interactions between perfluorinated alkyl chains: A case of perfluorinated Cu(II) diiminate Cu[C2F5-C(NH)-CF=C(NH)-CF3]2
A synthesis of the perfluorinated copper diiminate complex Cu[C2F5-C(NH)-CF=C(NH)-CF3]2 (3) and its self-assembly into infinite 1D chains in the crystal via Type II C(sp3)-FΒ·Β·Β·F-C(sp3) contacts between perfluoroethyl substituents is reported. Rare Type II FΒ·Β·Β·F interactions were studied by DFT calculations and topological analysis of the electron density distribution within the formalism of Bader's theory (QTAIM method). This is the first report which discusses Type II contacts between perfuoroalkyl chains. Β© 2021 Walter de Gruyter GmbH, Berlin/Boston 2021
Attractive fluorineΒ·Β·Β·fluorine interactions between perfluorinated alkyl chains: A case of perfluorinated Cu(II) diiminate Cu[C<sub>2</sub>F<sub>5</sub>-C(NH)-CF=C(NH)-CF<sub>3</sub>]<sub>2</sub>
A synthesis of the perfluorinated copper diiminate complex Cu[C2F5-C(NH)-CF=C(NH)-CF3]2 (3) and its self-assembly into infinite 1D chains in the crystal via Type II C(sp3)-FΒ·Β·Β·F-C(sp3) contacts between perfluoroethyl substituents is reported. Rare Type II FΒ·Β·Β·F interactions were studied by DFT calculations and topological analysis of the electron density distribution within the formalism of Bader's theory (QTAIM method). This is the first report which discusses Type II contacts between perfuoroalkyl chains
ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π³Π΅ΡΠ΅ΡΠΎΠΏΠΎΠ»ΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΡΠΈΠΏΠ° (NH4)2[Co(H2O)4]2[Mo8O27]β6H2O Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΡΠΈΠ»Π΅Π½Π°
Carrying out heterogeneous acid catalysis with the use of heteropoly compounds has received considerable attention due to the great economic and environmental benefits. In spite of this, its industrial application is limited as there are difficulties in catalyst regeneration (settling) caused by its relatively low thermal stability. The aim of present work was to search and select catalysts related to the class of heteropoly compounds for propane cracking, to test the selectivity of the prosses as well as to discuss possible approaches for solving the problem of catalyst deactivation, that can contribute to achieve stable characteristics of solid heteropoly catalysts. Among these approaches are: the development of new catalysts with high thermal stability, the modification of catalysts to promote coke combustion, the inhibition of coke formation on heteropoly compound catalysts during the process, carrying out the reactions in supercritical media and also the cascade reactions using a multifunctional heteropoly catalyst. The obtained catalyst was also studied by physicochemical methods to get deep knowledge about which features of these compounds influence on the catalytic activity. A highly active and selective catalyst for ammonium octomolybdenocobaltate(II) ammonium (NH4)2[Co(H2O)4]2[Mo8O27]β6H2O was synthesized for cracking associated petroleum gases. The qualitative, quantitative, and structural composition as well as the specific surface area of the obtained catalyst was established by the methods of X-ray diffraction, X-ray phase and fluorescence analysis. It was revealed that ammonium octomolybdenocobaltate(II) crystallizes in a triclinic syngony with cell parameters: Π° = 8.6292(9) Γ
b = 9.4795(10) Γ
c = 12.2071(13) Γ
Ξ± = 104.326(2)Β° Ξ² = 109.910(2)Β° Ξ³ = 100.820(2)Β°.ΠΠ΅ΡΠ΅ΡΠΎΠ³Π΅Π½Π½ΡΠΉ ΠΊΠΈΡΠ»ΠΎΡΠ½ΡΠΉ ΠΊΠ°ΡΠ°Π»ΠΈΠ· Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³Π΅ΡΠ΅ΡΠΎΠΏΠΎΠ»ΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²ΡΠ³ΠΎΠ΄ΠΎΠΉ ΠΈ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°ΠΌΠΈ. ΠΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅, ΠΎΠ΄Π½Π°ΠΊΠΎ, Π±ΡΠ»ΠΎ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΎ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈΠ·-Π·Π° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠΉ ΡΠ΅ΡΠΌΠΎΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ Π³Π΅ΡΠ΅ΡΠΎΠΏΠΎΠ»ΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΈΠ·-Π·Π° ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠ° (ΠΎΡΡΡΠ°ΠΈΠ²Π°Π½ΠΈΡ). Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠΈΡΠΊ ΠΈ ΠΏΠΎΠ΄Π±ΠΎΡ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² ΠΈΠ· ΠΊΠ»Π°ΡΡΠ° Π³Π΅ΡΠ΅ΡΠΎΠΏΠΎΠ»ΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π΄Π»Ρ ΠΊΡΠ΅ΠΊΠΈΠ½Π³Π° ΠΏΡΠΎΠΏΠ°Π½Π°, ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² ΠΊ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ΅ Π΄Π΅Π·Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°ΡΡ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠ²Π΅ΡΠ΄ΡΡ
ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² Π³Π΅ΡΠ΅ΡΠΎΠΏΠΎΠ»ΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ, Π° ΡΠ°ΠΊ ΠΆΠ΅ ΠΏΡΠΎΠ²Π΅ΡΠΊΠ° Π½Π° ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΠΊΡΠ΅ΠΊΠΈΠ½Π³Π΅ ΠΏΡΠΎΠΏΠ°Π½Π°. ΠΡΠΈ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Ρ Π²ΠΊΠ»ΡΡΠ°ΡΡ Π² ΡΠ΅Π±Ρ: ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΡ Π½ΠΎΠ²ΡΡ
ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ², ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΡ
Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡΡ, ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² Π΄Π»Ρ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΡΠ³ΠΎΡΠ°Π½ΠΈΡ ΠΊΠΎΠΊΡΠ°, ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΊΡΠ° Π½Π° ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠ°Ρ
Π³Π΅ΡΠ΅ΡΠΎΠΏΠΎΠ»ΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΡΠ°Π±ΠΎΡΡ, ΡΠ΅Π°ΠΊΡΠΈΠΈ Π² ΡΠ²Π΅ΡΡ
ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ΅Π΄Π°Ρ
ΠΈ ΠΊΠ°ΡΠΊΠ°Π΄Π½ΡΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠ° ΠΈΠ· Π³Π΅ΡΠΎΠ΅ΡΠΎΠΏΠΎΠ»ΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡ ΡΠ°ΠΊ ΠΆΠ΅ Π±ΡΠ» ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π΄Π»Ρ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΊΠ°ΠΊΠΈΠ΅ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ° ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π²Π»ΠΈΡΡΡ Π½Π° ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ. ΠΡΠ» ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ Π²ΡΡΠΎΠΊΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΠΉ ΠΈ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡ ΠΎΠΊΡΠΎΠΌΠΎΠ»ΠΈΠ±Π΄Π΅Π½ΠΎΠΊΠΎΠ±Π°Π»ΡΡΠ°Ρ(II) Π°ΠΌΠΌΠΎΠ½ΠΈΡ (NH4)2[Co(H2O)4]2[Mo8O27]β6H2O Π΄Π»Ρ ΠΊΡΠ΅ΠΊΠΈΠ½Π³Π° ΠΏΠΎΠΏΡΡΠ½ΡΡ
Π½Π΅ΡΡΡΠ½ΡΡ
Π³Π°Π·ΠΎΠ². Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ, ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠ° ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎ-ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠ³ΠΎ, ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΠ°Π·ΠΎΠ²ΠΎΠ³ΠΎ, ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΠ»ΡΠΎΡΠΈΡΡΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½Π° ΡΠ΄Π΅Π»ΡΠ½Π°Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡ ΠΊΠ°ΡΠ°Π»ΠΈΠ·Π°ΡΠΎΡΠ°, Π° ΡΠ°ΠΊ ΠΆΠ΅ Π²ΡΡΠ²Π»Π΅Π½Π° Π²ΡΡΠΎΠΊΠ°Ρ ΠΊΠ°ΡΠ°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ. ΠΠΊΡΠΎΠΌΠΎΠ»ΠΈΠ±Π΄Π΅Π½ΠΎΠΊΠΎΠ±Π°Π»ΡΡΠ°Ρ(II) Π°ΠΌΠΌΠΎΠ½ΠΈΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·ΡΠ΅ΡΡΡ Π² ΡΡΠΈΠΊΠ»ΠΈΠ½Π½ΠΎΠΉ ΡΠΈΠ½Π³ΠΎΠ½ΠΈΠΈ Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΡΠ΅ΠΉΠΊΠΈ: Π° = 8.6292(9) Γ
b = 9.4795(10) Γ
c = 12.2071(13) Γ
Ξ± = 104.326(2)Β° Ξ² = 109.910(2)Β° Ξ³ = 100.820(2)Β°