13 research outputs found
Recommended from our members
Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2
The SAMUM-2 experiment took place in the Cape Verde is lands in January–February 2008. The colocated ground-based and airborne instruments allow the study of desert dust optical and microphysical properties in a closure experiment. The Meteorological Institute of the University of Munich deployed one sun-sky photometer and two tropospheric lidar systems. A travelling AERONET-Cimel sun-sky radiometer was also deployed. During the measurement period the aerosol scenario over Cape Verde mostly consisted of a dust layer below 2 km and a smoke-dust layer above 2–4 km a.s.l. The Saharan dust arrived at the site from the NE, whereas the smoke originated in the African equatorial region. This paper describes the main results of the Sun photometer observations, supported by lidar information. An analysis of the variations in the aerosol optical depth (AOD) in the range 340–1550 nm, the Ångström exponent, volume size distributions and single scattering albedo is presented. The aerosol mixtures are analysed by means of the fine mode fraction of the AOD provided by the sun-sky inversion data and the Spectral Deconvolution Algorithm. The mean AOD (500 nm) was 0.31, with associated low ångström exponent of 0.46. Several types of events were detected within the data set, with prevalence of dust or mixtures as characterized by the Ångstr¨om exponents of extinction and absorption and the fine mode fraction. Aerosol properties derived from sunphotometry were compared to in situ measurements of size distribution, effective radius and single scattering albedo
Evaluation of Sun photometer capabilities for the retrievals of aerosol optical depth at high latitudes: the POLAR-AOD intercomparison campaigns
Accuracy requirements for aerosol optical depth (AOD) in polar regions are much more stringent than those usually encountered in established sun photometer networks, while comparability of data from different archive centres is a further important issue. Therefore, two intercomparison campaigns were held during spring 2006 at Ny-Ålesund (Svalbard) and autumn 2008 at Izaña (Tenerife) within the framework of the IPY POLAR-AOD project, with the participation of various research institutions routinely employing different instrument models at Arctic and Antarctic stations. As reported here, a common algorithm was used for data analysis with the aim of minimizing a large part of the discrepancies affecting the previous studies. During the Ny-Ålesund campaign, spectral values of AOD derived from measurements taken with different instruments were found to agree, presenting at both 500 nm and 870 nm wavelengths average values of root mean square difference (RMSD) and standard deviation of the difference (SDD) equal to 0.003. Correspondingly, the mean bias difference (MBD) varied mainly between ␣0.003 and þ0.003 at 500 nm, and between ␣0.004 and þ0.003 at 870 nm. During the Izaña campaign, which was also intended as an intercalibration opportunity, RMSD and SDD values were estimated to be equal to 0.002 for both channels on average, with MBD ranging between ␣0.004 and þ0.004 at 500 nm and between ␣0.002 and þ0.003 at 870 nm. RMSD and SDD values for Ångström exponent a were estimated equal to 0.06 during the Ny-Ålesund campaign and 0.39 at Izaña. The results confirmed that sun photometry is a valid technique for aerosol monitoring in the pristine atmospheric turbidity conditions usually observed at high latitudes
Fishing Sea-bed Habitat Risk Assessment (A framework towards the quantitative assessment of trawling impact on the sea-bed and benthic ecosystem)
A framework to assess the impact of mobile fishing gear on the seabed and benthic ecosystem is presented. The framework that can be used at regional and local scales considers the physical effects of trawl gears on the seabed, on marine taxa and the functioning of the benthic ecosystem. A reductionist approach is applied that breaks down a fishing gear in its components and distinguishes a number of biological traits that are chosen to determine the vulnerability of benthos for the impact of a gear component or to provide a proxy for their ecological role. The approach considers a wide variety of gear elements, such as otter boards, twin trawl clump and ground-rope, and, sweeps that herd the fish. The physical impact of these elements on the seabed, comprising scraping of the seabed, sediment mobilisation and penetration, are a function of the mass, size and speed of the individual component. The impact of the elements on the benthic community are quantified using a biological-trait approach, that considers the vulnerability of the benthic community to trawl impact (e.g. sediment position, morphology), the recovery rate (e.g. longevity, maturation age, reproductive characteristics) and the ecological role. The framework is explored to compare the indicators for pressure and ecological impact of bottom trawling in three main seabed habitat types in the North Sea. Preliminary results show that the sublittoral mud habitat is impacted most due to the combined effect of an intensive fishing and high proportions of long-lived taxa