15 research outputs found

    Spectroscopy of high proper motion stars in the ground--based UV

    Full text link
    Based on high quality spectral data (spectral resolution R>60000) within the wavelength range of 3550-5000 AA we determined main parameters (effective temperature, surface gravity, microturbulent velocity, and chemical element abundances including heavy metals from Sr to Dy) for 14 metal-deficient G-K stars with large proper motions. The stars we studied have a wide range of metallicity: [Fe/H]=-0.3 \div -2.9. Abundances of Mg, Al, Sr and Ba were calculated with non-LTE line-formation effects accounted for. Abundances both of the radioactive element Th and r-process element Eu were determined using synthetic spectrum calculations. We selected stars that belong to different galactic populations according to the kinematical criterion and parameters determined by us. We found that the studied stars with large proper motions refer to different components of the Galaxy: thin, thick disks and halo. The chemical composition of the star BD+80 245 located far from the galactic plane agrees with its belonging to the accreted halo. For the giant HD115444 we obtained [Fe/H]=-2.91, underabundance of Mn, overabundance of heavy metals from Ba to Dy, and, especially high excess of the r-process element Europium: [Eu/Fe]=+1.26. Contrary to its chemical composition typical for halo stars, HD115444 belongs to the disc population according to its kinematic parameters.Comment: 16 pages, 4 figures, 5 tables, "UV Universe-2010 (2nd NUVA Symposium) conference

    Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra

    Full text link
    [Abridged] We previously presented evidence for a varying fine-structure constant, alpha, in two independent samples of Keck/HIRES QSO spectra. Here we present a detailed many-multiplet analysis of a third Keck/HIRES sample containing 78 absorption systems. We also re-analyse the previous samples, providing a total of 128 absorption systems over the redshift range 0.2<z_abs<3.7. All three samples separately yield consistent, significant values of da/a. The analyses of low- and high-z systems rely on different ions/transitions with very different dependencies on alpha, yet they also give consistent results. We identify additional random errors in 22 high-z systems characterized by transitions with a large dynamic range in apparent optical depth. Increasing the statistical errors on da/a for these systems gives our fiducial result, a weighted mean da/a=(-0.543+/-0.116)x10^-5, representing 4.7-sigma evidence for a smaller weighted mean alpha in the absorption clouds. Assuming that da/a=0 at z_abs=0, the data marginally prefer a linear increase in alpha with time: dota/a=(6.40+/-1.35)x10^-16 yr^-1. The two-point correlation function for alpha is consistent with zero over 0.2-13 Gpc comoving scales and the angular distribution of da/a shows no significant dipolar anisotropy. We therefore have no evidence for spatial variations in da/a. We extend our previous searches for possible systematic errors, identifying atmospheric dispersion and isotopic structure effects as potentially the most significant. However, overall, known systematic errors do not explain the results. Future many-multiplet analyses of QSO spectra from different telescopes and spectrographs will provide a now crucial check on our Keck/HIRES results.Comment: 31 pages, 25 figures (29 EPS files), 8 tables. Accepted by MNRAS. Colour versions of Figs. 6, 8 & 10 and text version of Table 3 available at http://www.ast.cam.ac.uk/~mim/pub.htm

    The Theory of Brown Dwarfs and Extrasolar Giant Planets

    Full text link
    Straddling the traditional realms of the planets and the stars, objects below the edge of the main sequence have such unique properties, and are being discovered in such quantities, that one can rightly claim that a new field at the interface of planetary science and and astronomy is being born. In this review, we explore the essential elements of the theory of brown dwarfs and giant planets, as well as of the new spectroscopic classes L and T. To this end, we describe their evolution, spectra, atmospheric compositions, chemistry, physics, and nuclear phases and explain the basic systematics of substellar-mass objects across three orders of magnitude in both mass and age and a factor of 30 in effective temperature. Moreover, we discuss the distinctive features of those extrasolar giant planets that are irradiated by a central primary, in particular their reflection spectra, albedos, and transits. Aspects of the latest theory of Jupiter and Saturn are also presented. Throughout, we highlight the effects of condensates, clouds, molecular abundances, and molecular/atomic opacities in brown dwarf and giant planet atmospheres and summarize the resulting spectral diagnostics. Where possible, the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for publication in the Reviews of Modern Physics. 30 figures are color. Most of the figures are in GIF format to reduce the overall size. The full version with figures can also be found at: http://jupiter.as.arizona.edu/~burrows/papers/rm

    Searching for a gas cloud surrounding the WASP-18 planetary system

    No full text
    Near-UV (NUV) Hubble Space Telescope (HST) observations of the extreme hot-Jupiter WASP-12b revealed the presence of diffuse exospheric gas extending beyond the planet's Roche lobe. Furthermore the NUV observations showed a complete lack of the normally bright core emission of the Mg ii h&k resonance lines, in agreement with the measured anomalously low stellar activity index (logR' HK). Comparisons with other distant and inactive stars, and the analysis of radio and optical measurements of the intervening interstellar medium (ISM), led us to the conclusion that the system is surrounded by a circumstellar gas cloud, likely formed of material lost by the planet. Similar anomalous (logR' HK) index deficiencies might therefore signal the presence of translucent circumstellar gas around other stars hosting evaporating planets; we identified five such systems and WASP-18 is one of them. Both radio and optical observations of the region surrounding WASP-18 point towards a negligible ISM absorption along the WASP-18 line of sight. Excluding the unlikely possibility of an intrinsic anomalously low stellar activity, we conclude that the system is probably surrounded by a circumstellar gas cloud, presumably formed of material lost by the planet. Nevertheless only a far-UV spectrum of the star would provide a definite answer. Theoretical modelling suggests WASP-18b undergoes negligible mass loss, in contrast to the probable presence of a circumstellar gas cloud formed of material lost by the planet. The solution might be the presence either of an extra energy source driving mass loss (e.g., the reconnection of the stellar and planetary magnetic fields inside the planet atmosphere) or of an evaporating third body (e.g., moon)
    corecore