47 research outputs found
Cluster Density and the IMF
Observed variations in the IMF are reviewed with an emphasis on environmental
density. The remote field IMF studied in the LMC by several authors is clearly
steeper than most cluster IMFs, which have slopes close to the Salpeter value.
Local field regions of star formation, like Taurus, may have relatively steep
IMFs too. Very dense and massive clusters, like super star clusters, could have
flatter IMFs, or inner-truncated IMFs. We propose that these variations are the
result of three distinct processes during star formation that affect the mass
function in different ways depending on mass range. At solar to intermediate
stellar masses, gas processes involving thermal pressure and supersonic
turbulence determine the basic scale for stellar mass, starting with the
observed pre-stellar condensations, and they define the mass function from
several tenths to several solar masses. Brown dwarfs require extraordinarily
high pressures for fragmentation from the gas, and presumably form inside the
pre-stellar condensations during mutual collisions, secondary fragmentations,
or in disks. High mass stars form in excess of the numbers expected from pure
turbulent fragmentation as pre-stellar condensations coalesce and accrete with
an enhanced gravitational cross section. Variations in the interaction rate,
interaction strength, and accretion rate among the primary fragments formed by
turbulence lead to variations in the relative proportions of brown dwarfs,
solar to intermediate mass stars, and high mass stars.Comment: 14 pages, 3 figures, to be published in ``IMF@50: A Fest-Colloquium
in honor of Edwin E. Salpeter,'' held at Abbazia di Spineto, Siena, Italy,
May 16-20, 2004. Kluwer Academic Publishers; edited by E. Corbelli, F. Palla,
and H. Zinnecke
The Theory of Brown Dwarfs and Extrasolar Giant Planets
Straddling the traditional realms of the planets and the stars, objects below
the edge of the main sequence have such unique properties, and are being
discovered in such quantities, that one can rightly claim that a new field at
the interface of planetary science and and astronomy is being born. In this
review, we explore the essential elements of the theory of brown dwarfs and
giant planets, as well as of the new spectroscopic classes L and T. To this
end, we describe their evolution, spectra, atmospheric compositions, chemistry,
physics, and nuclear phases and explain the basic systematics of
substellar-mass objects across three orders of magnitude in both mass and age
and a factor of 30 in effective temperature. Moreover, we discuss the
distinctive features of those extrasolar giant planets that are irradiated by a
central primary, in particular their reflection spectra, albedos, and transits.
Aspects of the latest theory of Jupiter and Saturn are also presented.
Throughout, we highlight the effects of condensates, clouds, molecular
abundances, and molecular/atomic opacities in brown dwarf and giant planet
atmospheres and summarize the resulting spectral diagnostics. Where possible,
the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for
publication in the Reviews of Modern Physics. 30 figures are color. Most of
the figures are in GIF format to reduce the overall size. The full version
with figures can also be found at:
http://jupiter.as.arizona.edu/~burrows/papers/rm