6 research outputs found
Spin glass behavior of frustrated 2-D Penrose lattice in the classical planar model
Via extensive Monte Carlo studies we show that the frustrated XY Hamiltonian
on a 2-D Penrose lattice admits of a spin glass phase at low temperature.
Studies of the Edwards-Anderson order parameter, spin glass susceptibility, and
local (linear) susceptibility point unequivocally to a paramagnetic to spin
glass transition as the temperature is lowered. Specific heat shows a rounded
peak at a temperature above the spin glass transition temperature, as is
commonly observed in spin glasses. Our results strongly suggest that the
critical point exponents are the same as obtained by Bhatt and Young in the
Ising model on a square lattice. However, unlike in the latter case,
the critical temperature is clearly finite (nonzero). The results imply that a
quasiperiodic 2-D array of superconducting grains in a suitably chosen
transverse magnetic field should behave as a superconducting glass at low
temperature.Comment: RevTex, 4 pages Including 4 figures. To appear in the June 1 1996
issue of Phys. Rev. B (Rapid Communications). Revised/replaced edition
contains an erratum at the end of the paper, also to appear in Phys. Rev.
Critical phenomena: 150 years since Cagniard de la Tour
Critical phenomena were discovered by Cagniard de la Tour in 1822, who died
150 years ago. In order to mark this anniversary, the context and the early
history of his discovery is reviewed. We then follow with a brief sketch of the
history of critical phenomena, indicating the main lines of development until
the present date.
Os fen\'omenos cr\'{\i}ticos foram descobertos pelo Cagniard de la Tour em
Paris em 1822. Para comemorar os 150 anos da sua morte, o contexto e a
hist\'oria initial da sua descoberta \'e contada. Conseguimos com uma
descri\c{c}\~ao breve da hist\'oria dos fen\'emenos cr\'{\i}ticos, indicando as
linhas principais do desenvolvimento at\'e o presente.Comment: Latex2e, 8 pp, 3 eps figures include