106 research outputs found
Quasiparticle spectra in the vicinity of a d-wave vortex
We discuss the evolution of the local quasiparticle spectral density and the
related tunneling conductance measurable by the scanning tunneling microscope,
as a function of distance r and angle \theta from the vortex core in a
d_{x^2-y^2} superconductor. We consider the effects of electronic disorder and
of a strongly anisotropic tunneling matrix element, and show that in real
materials they will likely obscure the ~1/r asymptotic tail in the zero-bias
tunneling conductance expected from the straightforward semiclassical analysis.
We also give a prediction for the tunneling conductance anisotropy around the
vortex core and establish a connection to the structure of the tunneling matrix
element.Comment: 9 pages REVTeX + 5 PostScript figures. For related work and info
visit http://www.pha.jhu.edu/~fran
Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques
A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1–8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials
The historical Greenland Climate Network (GC-Net) curated and augmented level-1 dataset
The Greenland Climate Network (GC-Net) consists of 31 automatic weather stations (AWSs) at 30 sites across the Greenland Ice Sheet. The first site was initiated in 1990, and the project has operated almost continuously since 1995 under the leadership of the late Konrad Steffen. The GC-Net AWS measured air temperature, relative humidity, wind speed, atmospheric pressure, downward and reflected shortwave irradiance, net radiation, and ice and firn temperatures. The majority of the GC-Net sites were located in the ice sheet accumulation area (17 AWSs), while 11 AWSs were located in the ablation area, and two sites (three AWSs) were located close to the equilibrium line altitude. Additionally, three AWSs of similar design to the GC-Net AWS were installed by Konrad Steffen's team on the Larsen C ice shelf, Antarctica. After more than 3 decades of operation, the GC-Net AWSs are being decommissioned and replaced by new AWSs operated by the Geological Survey of Denmark and Greenland (GEUS). Therefore, making a reassessment of the historical GC-Net AWS data is necessary. We present a full reprocessing of the historical GC-Net AWS dataset with increased attention to the filtering of erroneous measurements, data correction and derivation of additional variables: continuous surface height, instrument heights, surface albedo, turbulent heat fluxes, and 10 m ice and firn temperatures. This new augmented GC-Net level-1 (L1) AWS dataset is now available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2023) and will continue to be refined. The processing scripts, latest data and a data user forum are available at https://github.com/GEUS-Glaciology-and-Climate/GC-Net-level-1-data-processing (last access: 30 November 2023). In addition to the AWS data, a comprehensive compilation of valuable metadata is provided: maintenance reports, yearly pictures of the stations and the station positions through time. This unique dataset provides more than 320 station years of high-quality atmospheric data and is available following FAIR (findable, accessible, interoperable, reusable) data and code practices
Optimization of Non-Coding Regions for a Non-Modified mRNA COVID-19 Vaccine
The CVnCoV (CureVac) mRNA vaccine for SARS-CoV-2 has recently been evaluated in a phase 2b/3 efficacy trial in humans1. CV2CoV is a second-generation mRNA vaccine with non-modified nucleosides but optimized non-coding regions and enhanced antigen expression. Here we report a head-to-head study of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in nonhuman primates. We immunized 18 cynomolgus macaques with two doses of 12 ug of lipid nanoparticle formulated CVnCoV, CV2CoV, or sham (N=6/group). CV2CoV induced substantially higher binding and neutralizing antibodies, memory B cell responses, and T cell responses as compared with CVnCoV. CV2CoV also induced more potent neutralizing antibody responses against SARS-CoV-2 variants, including the delta variant. Moreover, CV2CoV proved comparably immunogenic to the BNT162b2 (Pfizer) vaccine in macaques. While CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded more robust protection with markedly lower viral loads in the upper and lower respiratory tract. Binding and neutralizing antibody titers correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of a non-modified mRNA SARS-CoV-2 vaccine in nonhuman primates
The instrument suite of the European Spallation Source
An overview is provided of the 15 neutron beam instruments making up the initial instrument suite of the
European Spallation Source (ESS), and being made available to the neutron user community. The ESS neutron
source consists of a high-power accelerator and target station, providing a unique long-pulse time structure
of slow neutrons. The design considerations behind the time structure, moderator geometry and instrument
layout are presented.
The 15-instrument suite consists of two small-angle instruments, two reflectometers, an imaging beamline,
two single-crystal diffractometers; one for macromolecular crystallography and one for magnetism, two powder
diffractometers, and an engineering diffractometer, as well as an array of five inelastic instruments comprising
two chopper spectrometers, an inverse-geometry single-crystal excitations spectrometer, an instrument for vibrational
spectroscopy and a high-resolution backscattering spectrometer. The conceptual design, performance
and scientific drivers of each of these instruments are described.
All of the instruments are designed to provide breakthrough new scientific capability, not currently
available at existing facilities, building on the inherent strengths of the ESS long-pulse neutron source of high
flux, flexible resolution and large bandwidth. Each of them is predicted to provide world-leading performance
at an accelerator power of 2 MW. This technical capability translates into a very broad range of scientific
capabilities. The composition of the instrument suite has been chosen to maximise the breadth and depth
of the scientific impact o
Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques
The emergence of SARS-CoV-2 variants that partially evade neutralizing antibodies poses a threat to the efficacy of current COVID-19 vaccines1,2. The Ad26.COV2.S vaccine expresses a stabilized Spike protein from the WA1/2020 strain and has recently demonstrated protective efficacy against symptomatic COVID-19 in humans in multiple geographic regions, including in South Africa where 95% of sequenced viruses in COVID-19 cases were the B.1.351 variant3. Here we show that Ad26.COV2.S elicits humoral and cellular immune responses that cross-react with the B.1.351 variant and protects against B.1.351 challenge in rhesus macaques. Ad26.COV2.S induced lower binding and neutralizing antibodies against B.1.351 as compared with WA1/2020 but elicited CD8 and CD4 T cell responses that were comparable against WA1/2020, B.1.351, B.1.1.7, P.1, and CAL.20C variants. B.1.351 infection of sham control rhesus macaques resulted in higher levels of virus replication in bronchoalveolar lavage and nasal swabs than did WA1/2020 infection. Ad26.COV2.S provided robust protection against both WA1/2020 and B.1.351, although we observed higher levels of virus in vaccinated animals following B.1.351 challenge. These data demonstrate that Ad26.COV2.S provided robust protection against B.1.351 challenge in rhesus macaques. Our findings have important implications for vaccine control of SARS-CoV-2 variants of concern
Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study
A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study
In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4
DNA vaccine protection against SARS-CoV-2 in rhesus macaques
The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made the development of a vaccine a top biomedical priority. In this study, we developed a series of DNA vaccine candidates expressing different forms of the SARS-CoV-2 spike (S) protein and evaluated them in 35 rhesus macaques. Vaccinated animals developed humoral and cellular immune responses, including neutralizing antibody titers at levels comparable to those found in convalescent humans and macaques infected with SARS-CoV-2. After vaccination, all animals were challenged with SARS-CoV-2, and the vaccine encoding the full-length S protein resulted in >3.1 and >3.7 log10 reductions in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, as compared with viral loads in sham controls. Vaccine-elicited neutralizing antibody titers correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate vaccine protection against SARS-CoV-2 in nonhuman primates
- …