46 research outputs found

    UNDERSTANDING THE SCALAR MESON qqˉq\bar q NONET

    Full text link
    It is shown that one can fit the available data on the a0(980), f0(980), f0(1300) and K*0(1430) mesons as a distorted 0++ qq bar nonet using very few (5-6) parameters and an improved version of the unitarized quark model. This includes all light two-pseudoscalar thresholds, constraints from Adler zeroes, flavour symmetric couplings, unitarity and physically acceptable analyticity. The parameters include a bare uu bar or dd bar mass, an over-all coupling constant, a cutoff and a strange quark mass of 100 MeV, which is in accord with expectations from the quark model. It is found that in particular for the a0(980) and f0(980) the KK bar component in the wave function is large, i.e., for a large fraction of the time the qq bar state is transformed into a virtual KK bar pair. This KK bar component, together with a similar component of eta' pi for the a0(980) , and eta eta, eta eta' and eta' eta' components for the f0(980), causes the substantial shift to a lower mass than what is naively expected from the qq bar component alone. Mass, width and mixing parameters, including sheet and pole positions, of the four resonances are given, with a detailed pedagogical discussion of their meaning.Comment: 35 pages in plain latex (ZPC in press), 10 figures obtainable from the author ([email protected]) with regular mail or as a large PS fil

    Predicting D -> sigma pi

    Full text link
    We examine the D -> sigma pi amplitude through a constituent quark-meson model, incorporating heavy quark and chiral symmetries, finding a good agreement with the recent E791 data analysis of D -> 3 pi via sigma.Comment: 6 pages, RevTex, One new contribution added, typos correcte

    DCC dynamics with the SU(3) linear sigma model

    Get PDF
    The SU(3) extension of the linear sigma model is employed to elucidate the effect of including strangeness on the formation of disoriented chiral condensates. By means of a Hartree factorization, approximate dispersion relations for the 18 scalar and pseudoscalar meson species are derived and their self-consistent solution makes it possible to trace out the thermal path of the two order parameters as well as delineate the region of instability within which spontaneous pair creation becomes possible. The results depend significantly on the employed sigma mass, with the highest values yielding the largest regions of instability. An approximate solution of the equations of motion for the order parameter in scenarios emulating uniform scaling expansions show that even with a rapid quench only the pionic modes grow unstable. Nevertheless, the rapid and oscillatory relaxation of the order parameters leads to enhanced production of both pions and (to a lesser degree) kaons.Comment: 29 pages, RevTeX, 11 postscript figures, discussion about anomaly term adde

    The Proton Spin and the Wigner Rotation

    Full text link
    It is shown that in both the gluonic and strange sea explanations of the Ellis-Jaffe sum rule violation discovered by the European Muon Collaboration (EMC), the spin of the proton, when viewed in in its rest reference frame, could by fully provided by quarks and antiquarks within a simple quark model picture, taken into account the relativistic effect from the Wigner rotation.Comment: 13 latex page

    Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV I: pion-induced results and hadronic parameters

    Full text link
    We present a nucleon resonance analysis by simultaneously considering all pion- and photon-induced experimental data on the final states gamma N, pi N, 2 pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The omega N production mechanism is dominated by large P_{11}(1710) and P_{13}(1900) contributions. In this first part, we present the results of the pion-induced reactions and the extracted resonance and background properties with emphasis on the difference between global and purely hadronic fits.Comment: 54 pages, 26 figures, discussion extended, typos corrected, references updated, to appear in Phys. Rev.

    Scalar Glueball Decay Into Pions In Effective Theory

    Get PDF
    We discuss the mixing between the sigma meson sigma and the "pure" glueball field H and study the decays of the scalar glueball candidates f_0(1370), f_0(1500) and f_0(1710) (a linear combination of sigma and H) into two pions in an effective linear sigma model.Comment: 10 pages and 3 figures (an extended version of hep-ph/9805412), to appear in Phys. Rev.

    Influence of the U(1)_A Anomaly on the QCD Phase Transition

    Full text link
    The SU(3)_{r} \times SU(3)_{\ell} linear sigma model is used to study the chiral symmetry restoring phase transition of QCD at nonzero temperature. The line of second order phase transitions separating the first order and smooth crossover regions is located in the plane of the strange and nonstrange quark masses. It is found that if the U(1)_{A} symmetry is explicitly broken by the U(1)_{A} anomaly then there is a smooth crossover to the chirally symmetric phase for physical values of the quark masses. If the U(1)_{A} anomaly is absent, then there is a phase transition provided that the \sigma meson mass is at least 600 MeV. In both cases, the region of first order phase transitions in the quark mass plane is enlarged as the mass of the \sigma meson is increased.Comment: 5 pages, 3 figures, Revtex, discussion extended and references added. To appear in PR

    Meson resonances, large N_c and chiral symmetry

    Get PDF
    We investigate the implications of large N_c and chiral symmetry for the mass spectra of meson resonances. Unlike for most other mesons, the mass matrix of the light scalars deviates strongly from its large-N_c limit. We discuss the possible assignments for the lightest scalar nonet that survives in the large-N_c limit.Comment: 14 page

    Large Nc and Chiral Dynamics

    Get PDF
    We study the dependence on the number of colors of the leading pi pi scattering amplitude in chiral dynamics. We demonstrate the existence of a critical number of colors for and above which the low energy pi pi scattering amplitude computed from the simple sum of the current algebra and vector meson terms is crossing symmetric and unitary at leading order in a truncated and regularized 1/Nc expansion. The critical number of colors turns out to be Nc=6 and is insensitive to the explicit breaking of chiral symmetry. Below this critical value, an additional state is needed to enforce the unitarity bound; it is a broad one, most likely of "four quark" nature.Comment: RevTeX4, 6 fig., 5 page

    Radiative Scalar Meson Decays in the Light-Front Quark Model

    Full text link
    We construct a relativistic 3P0^3P_0 wavefunction for scalar mesons within the framework of light-front quark model(LFQM). This scalar wavefunction is used to perform relativistic calculations of absolute widths for the radiative decay processes(0++)γγ,(0++)ϕγ(0^{++})\to\gamma\gamma,(0^{++})\to\phi\gamma, and (0++)ργ(0^{++})\to\rho\gamma which incorporate the effects of glueball-qqˉq\bar{q} mixing. The mixed physical states are assumed to be f0(1370),f0(1500)f_0(1370),f_0(1500),and f0(1710)f_0(1710) for which the flavor-glue content is taken from the mixing calculations of other works. Since experimental data for these processes are poor, our results are compared with those of a recent non-relativistic model calculation. We find that while the relativistic corrections introduced by the LFQM reduce the magnitudes of the decay widths by 50-70%, the relative strengths between different decay processes are fairly well preserved. We also calculate decay widths for the processes ϕ(0++)γ\phi\to(0^{++})\gamma and (0^{++})\to\gamma\gamm involving the light scalars f0(980)f_0(980) and a0(980)a_0(980) to test the simple qqˉq\bar{q} model of these mesons. Our results of qqˉq\bar{q} model for these processes are not quite consistent with well-established data, further supporting the idea that f0(980)f_0(980) and a0(980)a_0(980) are not conventional qqˉq\bar{q} states.Comment: 10 pages, 4 figure
    corecore