525 research outputs found
A purely geometric distance to the binary star Atlas, a member of the Pleiades
We present radial velocity and new interferometric measurements of the double
star Atlas, which permit, with the addition of published interferometric data,
to precisely derive the orbital parameters of the binary system and the masses
of the components. The derived semi-major axis, compared with its measured
angular size, allows to determine a distance to Atlas of 132+-4 pc in a purely
geometrical way. Under the assumption that the location of Atlas is
representative of the average distance of the cluster, we confirm the distance
value generally obtained through main sequence fitting, in contradiction with
the early Hipparcos result (118.3+-3.5 pc).Comment: 5 pages, 3 figures, accepted for publication in A&A Letter
Normative Findings for Periocular Anthropometric Measurements among Chinese Young Adults in Hong Kong
Measurement of periocular structures is of value in several clinical specialties including ophthalmology, optometry, medical and clinical genetics, oculoplastic surgery, and traumatology. Therefore we aimed to determine the periocular anthropometric norms for Chinese young adults using a noninvasive 3D stereophotography system. Craniofacial images using the 3dMDface system were acquired for 103 Chinese subjects (51 males and 52 females) between the ages of 18 and 35 years. Anthropometric landmarks were identified on these digital images according to standard definitions, and linear distances between these landmarks were calculated. It was found that ocular measurements were significantly larger in Chinese males than females for intercanthal width, biocular width, and eye fissure lengths. No gender differences were found in the eye fissure height and the canthal index which ranged between 43 and 44. Both right and left eye fissure height-length ratios were significantly larger in females. This is the first study to employ 3D stereophotogrammetry to create a database of anthropometric normative data for periocular measurements. These data would be useful for clinical interpretation of periocular pathology and serve as reference values when planning aesthetic and posttraumatic surgical interventions
From Hipparcos to Gaia
The measurement of the positions, distances, motions and luminosities of
stars represents the foundations of modern astronomical knowledge. Launched at
the end of the eighties, the ESA Hipparcos satellite was the first space
mission dedicated to such measurements. Hipparcos improved position accuracies
by a factor of 100 compared to typical ground-based results and provided
astrometric and photometric multi-epoch observations of 118,000 stars over the
entire sky. The impact of Hipparcos on astrophysics has been extremely valuable
and diverse. Building on this important European success, the ESA Gaia
cornerstone mission promises an even more impressive advance. Compared to
Hipparcos, it will bring a gain of a factor 50 to 100 in position accuracy and
of a factor of 10,000 in star number, collecting photometric,
spectrophotometric and spectroscopic data for one billion celestial objects.
During its 5-year flight, Gaia will measure objects repeatedly, up to a few
hundred times, providing an unprecedented database to study the variability of
all types of celestial objects. Gaia will bring outstanding contributions,
directly or indirectly, to most fields of research in astrophysics, such as the
study of our Galaxy and of its stellar constituents, the search for planets
outside the solar system.Comment: 6 pages. New Horizons in Time Domain Astronomy Proceedings IAU
Symposium No. 285, 2012, E. Griffin, B. Hanisch & R. Seaman, ed
Shell structure underlying the evolution of quadrupole collectivity in S-38 and S-40 probed by transient-field g-factor measurements on fast radioactive beams
The shell structure underlying shape changes in neutron-rich nuclei between
N=20 and N=28 has been investigated by a novel application of the transient
field technique to measure the first-excited state g factors in S-38 and S-40
produced as fast radioactive beams. Details of the new methodology are
presented. In both S-38 and S-40 there is a fine balance between the proton and
neutron contributions to the magnetic moments. Shell model calculations which
describe the level schemes and quadrupole properties of these nuclei also give
a satisfactory explanation of the g factors. In S-38 the g factor is extremely
sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap
as occupation of this orbit strongly affects the proton configuration. The g
factor of deformed S-40 does not resemble that of a conventional collective
nucleus because spin contributions are more important than usual.Comment: 10 pages, 36 figures, accepted for publication in Physical Review
Measurement of excited states in 40Si and evidence for weakening of the N=28 shell gap
Excited states in 40Si have been established by detecting gamma-rays
coincident with inelastic scattering and nucleon removal reactions on a liquid
hydrogen target. The low excitation energy, 986(5) keV, of the 2+[1] state
provides evidence of a weakening in the N=28 shell closure in a neutron-rich
nucleus devoid of deformation-driving proton collectivity.Comment: accepted for publication in PR
Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S
The shell structure underlying shape changes in neutron-rich nuclei near N=28
has been investigated by a novel application of the transient field technique
to measure the first-excited state g factors in 38S and 40S produced as fast
radioactive beams. There is a fine balance between proton and neutron
contributions to the magnetic moments in both nuclei. The g factor of deformed
40S does not resemble that of a conventional collective nucleus because spin
contributions are more important than usual.Comment: 10 pages, 6 figures, accepted in PR
Evaluating the effects of bilingual traffic signs on driver performance and safety
Variable Message Signs (VMS) can provide immediate and relevant information to road users and bilingual VMS can provide great flexibility in countries where a significant proportion of the population speak an alternative language to the majority. The study reported here evaluates the effect of various bilingual VMS configurations on driver behaviour and safety. The aim of the study was to determine whether or not the visual distraction associated with bilingual VMS signs of different configurations (length, complexity) impacted on driving performance. A driving simulator was used to allow full control over the scenarios, road environment and sign configuration and both longitudinal and lateral driver performance was assessed. Drivers were able to read one and two-line monolingual signs and two-line bilingual signs without disruption to their driving behaviour. However, drivers significantly reduced their speed in order to read four-line monolingual and four-line bilingual signs, accompanied by an increase in headway to the vehicle in front. This implies that drivers are possibly reading the irrelevant text on the bilingual sign and various methods for reducing this effect are discussed
A microchip optomechanical accelerometer
The monitoring of accelerations is essential for a variety of applications
ranging from inertial navigation to consumer electronics. The basic operation
principle of an accelerometer is to measure the displacement of a flexibly
mounted test mass; sensitive displacement measurement can be realized using
capacitive, piezo-electric, tunnel-current, or optical methods. While optical
readout provides superior displacement resolution and resilience to
electromagnetic interference, current optical accelerometers either do not
allow for chip-scale integration or require bulky test masses. Here we
demonstrate an optomechanical accelerometer that employs ultra-sensitive
all-optical displacement read-out using a planar photonic crystal cavity
monolithically integrated with a nano-tethered test mass of high mechanical
Q-factor. This device architecture allows for full on-chip integration and
achieves a broadband acceleration resolution of 10 \mu g/rt-Hz, a bandwidth
greater than 20 kHz, and a dynamic range of 50 dB with sub-milliwatt optical
power requirements. Moreover, the nano-gram test masses used here allow for
optomechanical back-action in the form of cooling or the optical spring effect,
setting the stage for a new class of motional sensors.Comment: 16 pages, 9 figure
XHIP-II: Clusters and associations
Context. In the absence of complete kinematic data it has not previously been
possible to furnish accurate lists of member stars for all moving groups. There
has been an unresolved dispute concerning the apparent inconsistency of the
Hipparcos parallax distance to the Pleiades.
Aims. To find improved candidate lists for clusters and associations
represented among Hipparcos stars, to establish distances, and to cast light on
the Pleiades distance anomaly.
Methods. We use a six dimensional fitting procedure to identify candidates,
and plot CMDs for 20 of the nearest groups. We calculate the mean parallax
distance for all groups.
Results. We identify lists of candidates and calculated parallax distances
for 42 clusters and 45 associations represented within the Hipparcos catalogue.
We find agreement between parallax distance and photometric distances for the
most important clusters. For single stars in the Pleiades we find mean parallax
distance 125.6 \pm 4.2 pc and photometric distance 132 \pm 3 pc calibrated to
nearby groups of similar in age and composition. This gives no reason to doubt
either the Hipparcos database or stellar evolutionary theory.Comment: Accepted for publication in Astronomy Letters, 10 pages, 2 fig
Study of the decay
We present a study of with X(3872) decaying to using a sample of 657 million pairs recorded at the
resonance with the Belle detector at the KEKB asymmetric-energy
collider. Both and decay
modes are used. We find a peak of events with a mass of
, a width of and a product branching fraction , where the first errors are statistical
and the second ones are systematic. The significance of the signal is
. The difference between the fitted mass and the
threshold is calculated to be . We
also obtain an upper limit on the product of branching fractions of at
90% CL.Comment: 7 pages, 3 figures, BELLE-CONF-0832 contributed to ICHEP 2008,
revised and submitted to Phys. Rev. D R
- …
