700 research outputs found
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
Neural message passing on molecular graphs is one of the most promising
methods for predicting formation energy and other properties of molecules and
materials. In this work we extend the neural message passing model with an edge
update network which allows the information exchanged between atoms to depend
on the hidden state of the receiving atom. We benchmark the proposed model on
three publicly available datasets (QM9, The Materials Project and OQMD) and
show that the proposed model yields superior prediction of formation energies
and other properties on all three datasets in comparison with the best
published results. Furthermore we investigate different methods for
constructing the graph used to represent crystalline structures and we find
that using a graph based on K-nearest neighbors achieves better prediction
accuracy than using maximum distance cutoff or the Voronoi tessellation graph
Edge-dependent reflection and inherited fine structure of higher-order plasmons in graphene nanoribbons
We investigate higher-order plasmons in graphene nanoribbons, and present how
electronic edge states and wavefunction fine structure influence the graphene
plasmons. Based on nearest-neighbor tight-binding calculations, we find that a
standing-wave model based on nonlocal bulk plasmon dispersion is surprisingly
accurate for armchair ribbons of widths even down to a few nanometers, and we
determine the corresponding phase shift upon edge reflection and an effective
ribbon width. Wider zigzag ribbons exhibit a similar phase shift, whereas the
standing-wave model describes few-nanometer zigzag ribbons less satisfactorily,
to a large extent because of their edge states. We directly confirm that also
the larger broadening of plasmons for zigzag ribbons is due to their edge
states. Furthermore, we report a prominent fine structure in the induced
charges of the ribbon plasmons, which for armchair ribbons follows the
electronic wavefunction oscillations induced by inter-valley coupling.
Interestingly, the wavefunction fine structure is also found in our analogous
density-functional theory calculations, and both these and tight-binding
numerical calculations are explained quite well with analytical Dirac theory
for graphene ribbons
Emergent scale invariance of non-classical plasmons in graphene nanoribbons
Using a nearest-neighbor tight-binding model we investigate quantum effects
of plasmons on few-nanometer wide graphene nanoribbons, both for zigzag and
armchair edge terminations. With insight from the Dirac description we find an
emerging scale-invariant behavior that deviates from the classical model both
for zigzag and armchair structures. The onset of the deviation can be related
to the position of the lowest parabolic band in the band structure. Dirac
theory is only valid in the parameter subspace where the scale invariance holds
that relates narrow ribbons with high doping to wide ribbons with low doping.
We also find that the edge states present in zigzag ribbons give rise to a
blueshift of the plasmon, in contrast to earlier findings for graphene
nanodisks and nanotriangles
Materials property prediction using symmetry-labeled graphs as atomic-position independent descriptors
Computational materials screening studies require fast calculation of the
properties of thousands of materials. The calculations are often performed with
Density Functional Theory (DFT), but the necessary computer time sets
limitations for the investigated material space. Therefore, the development of
machine learning models for prediction of DFT calculated properties are
currently of interest. A particular challenge for \emph{new} materials is that
the atomic positions are generally not known. We present a machine learning
model for the prediction of DFT-calculated formation energies based on Voronoi
quotient graphs and local symmetry classification without the need for detailed
information about atomic positions. The model is implemented as a message
passing neural network and tested on the Open Quantum Materials Database (OQMD)
and the Materials Project database. The test mean absolute error is 20 meV on
the OQMD database and 40 meV on Materials Project Database. The possibilities
for prediction in a realistic computational screening setting is investigated
on a dataset of 5976 ABSe selenides with very limited overlap with the OQMD
training set. Pretraining on OQMD and subsequent training on 100 selenides
result in a mean absolute error below 0.1 eV for the formation energy of the
selenides.Comment: 14 pages including references and 13 figure
Influence of intermartensitic transitions on transport properties of Ni2.16Mn0.84Ga alloy
Magnetic, transport, and x-ray diffraction measurements of ferromagnetic
shape memory alloy NiMnGa revealed that this alloy undergoes
an intermartensitic transition upon cooling, whereas no such a transition is
observed upon subsequent heating. The difference in the modulation of the
martensite forming upon cooling from the high-temperature austenitic state
[5-layered (5M) martensite], and the martensite forming upon the
intermartensitic transition [7-layered (7M) martensite] strongly affects the
magnetic and transport properties of the alloy and results in a large thermal
hysteresis of the resistivity and magnetization . The
intermartensitic transition has an especially marked influence on the transport
properties, as is evident from a large difference in the resistivity of the 5M
and 7M martensite, , which is larger than the jump of resistivity at
the martensitic transition from the cubic austenitic phase to the monoclinic 5M
martensitic phase. We assume that this significant difference in between
the martensitic phases is accounted for by nesting features of the Fermi
surface. It is also suggested that the nesting hypothesis can explain the
uncommon behavior of the resistivity at the martensitic transition, observed in
stoichiometric and near-stoichiometric Ni-Mn-Ga alloys.Comment: 7 pages, 6 figures, REVTEX
The Service Use Index: A Tool for Examining Rural/Urban Differences
Development of tools for identifying and tracking differences in older adult service utilization by race, ethnicity, income, and geographic area is vital in the face of current demographic and economic changes in rural areas, particularly in areas experiencing rapid demographic changes. In this conceptual article, we explain how to calculate a service use index that compares service utilization of a specific group of older adults to that of the entire older adult population. We then illustrate its usefulness with a case example using geographic information systems (GIS). This unique approach can be utilized to understand differences across fields of practice, enhance planning to address differences, and monitor changes over time
A Decolonial Critique of the Racialized “Localwashing” of Extraction in Central Africa
Responding to calls for increased attention to actions and reactions “from above” within the
extractive industry, we offer a decolonial critique of the ways in which corporate entities and multinational institutions propagate racialized rhetoric of “local” suffering, “local” consultation, and “local” fault for failure in extractive zones. Such rhetoric functions to legitimize extractive intervention within a set of practices that we call localwashing. Drawing from a decade of research on and along the Chad-Cameroon Oil Pipeline, we show how multi-scalar actors converged to assert knowledge of, responsibility for, and collaborations with “local” people within a racialized politics of scale. These corporate representations of the racialized “local” are coded through long-standing colonial tropes. We identify three interrelated and overlapping flexian elite rhetoric(s) and practices of racialized localwashing: (a) anguishing, (b) arrogating, and (c) admonishing. These elite representations of a racialized “local” reveal diversionary efforts “from above” to manage public opinion, displace blame for project failures, and domesticate dissent in a context of persistent scrutiny and criticism from international and regional advocates and activists
- …