17 research outputs found

    A distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects

    Get PDF
    BACKGROUND: Weight loss has been shown to reduce risk factors associated with cardiovascular disease and diabetes; however, successful maintenance of weight loss continues to pose a challenge. OBJECTIVE: The present study was designed to assess whether changes in subcutaneous adipose tissue (scAT) gene expression during a low-calorie diet (LCD) could be used to differentiate and predict subjects who experience successful short-term weight maintenance from subjects who experience weight regain. DESIGN: Forty white women followed a dietary protocol consisting of an 8-wk LCD phase followed by a 6-mo weight-maintenance phase. Participants were classified as weight maintainers (WMs; 0-10% weight regain) and weight regainers (WRs; 50-100% weight regain) by considering changes in body weight during the 2 phases. Anthropometric measurements, bioclinical variables, and scAT gene expression were studied in all individuals before and after the LCD. Energy intake was estimated by using 3-d dietary records. RESULTS: No differences in body weight and fasting insulin were observed between WMs and WRs at baseline or after the LCD period. The LCD resulted in significant decreases in body weight and in several plasma variables in both groups. WMs experienced a significant reduction in insulin secretion in response to an oral-glucose-tolerance test after the LCD; in contrast, no changes in insulin secretion were observed in WRs after the LCD. An ANOVA of scAT gene expression showed that genes regulating fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were regulated differently by the LCD in WM and WR subjects. CONCLUSION: This study suggests that LCD-induced changes in insulin secretion and scAT gene expression may have the potential to predict successful short-term weight maintenanc

    European association for the study of obesity position statement on the global COVID-19 pandemic

    Get PDF
    COVID-19, the infectious disease caused by the coronavirus SARS-CoV-2, was declared a pandemic by the World Health Organization on March 12, 2020. The European Association for the Study of Obesity (EASO), as a scientific and medical society dedicated to the promotion of health and well-being, is greatly concerned about this global health challenge and its significant impacts on individuals, families, communities, health systems, nations, and wider society

    Antioxidant activity screening of extracts from Sideritis species (Labiatae) grown in Bulgaria

    No full text
    Plant samples from several species and populations of the genus Sideritis (Labiatae) grown in Bulgaria (S scardica, S syriaca and S montana) were extracted with different solvents. Their antioxidant activities were determined by the -carotene bleaching test (BCBT), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method and static headspace gas chromatography (HS-GC) and compared with the antioxidant activity of two reference compounds of different polarity, viz butylated hydroxytoluene (BHT) and rosmarinic acid. The pure reference compounds were applied in a ten-times lower concentration than the plant extracts. The highest antioxidant activity in the BCBT, close to that of BHT, was observed for the more apolar extracts. The inhibitory effect on -carotene bleaching of the polar extracts and rosmarinic acid was much lower than that of BHT. The inhibition of hexanal formation in bulk safflower oil by most of S syriaca and S scardica extracts was as effective as BHT but less so than rosmarinic acid. S montana extracts showed weak antioxidant or even pro-oxidant properties. Extracts from butanol and from ethyl acetate and the total methanol extracts from all Sideritis plants studied showed a strong radical scavenging activity against DPPH, close to that of rosmarinic acid. S montana extracts were, as a whole, slightly weaker radical inhibitors than the extracts from the other two species. The antioxidant activity of Sideritis extracts was attributed to the presence of flavonoid and phenylpropanoid glycoside

    Iridoid Glucosides from Phlomis tuberosa L. and Phlomis herba-ventis L.

    No full text
    Abstract A new iridoid glucoside, 5-desoxysesamoside, was isolated from Phlomis tuberosa L. (Lamiaceae) together with three known iridoid glucosides sesamoside, shanziside methyl ester and lamalbid. Lamiide was found in P. herba-ventis ssp. pungens in high concentrations.</jats:p

    Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance: the DIOGENES study.

    No full text
    Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. Objective was to assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants of the DIOGENES dietary intervention study. After an 8-week low calorie diet (LCD) subjects with &gt; 8 % weight loss were randomized to 5 ad libitum weight maintenance diets for 6 months: low protein (P)/low glycemic index (GI) (LP/LGI), low P/high GI (LP/HGI), high P/low GI (HP/LGI), high P/high GI (HP/HGI), and a control diet. Fatty acid composition in adipose tissue triglycerides was determined by gas chromatography in 195 subjects before the LCD (baseline), after LCD and weight maintenance. Weight change after the maintenance phase was positively correlated with baseline adipose palmitoleic (16:1n-7), myristoleic (14:1n-5) and trans-palmitoleic acid (16:1n-7t). Negative correlation was found with baseline oleic acid (18:1n-9). Lower baseline monounsaturated fatty acids (14:1n-5, 16:1n-7 and trans 16:1n-7) in adipose tissue triglycerides predict better weight maintenance. Lower oleic acid predicts lower weight decrease. These findings suggest a specific role of monounsaturated fatty acids in weight management and as weight change predictors

    A distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects [plus Supplementary data]

    No full text
    Background : Weight loss has been shown to reduce risk factors associated with cardiovascular disease and diabetes ; however, successful maintenance of weight loss continues to pose a challenge. Objective : The present study was designed to assess whether changes in subcutaneous adipose tissue (scAT) gene expression during a low-calorie diet (LCD) could be used to differentiate and predict subjects who experience successful short-term weight maintenance from subjects who experience weight regain. Design : Forty white women followed a dietary protocol consisting of an 8-wk LCD phase followed by a 6-mo weight-maintenance phase. Participants were classified as weight maintainers (WMs; 0-10% weight regain) and weight regainers (WRs; 50-100% weight regain) by considering changes in body weight during the 2 phases. Anthropometric measurements, bioclinical variables, and scAT gene expression were studied in all individuals before and after the LCD. Energy intake was estimated by using 3-d dietary records. Results: No differences in body weight and fasting insulin were observed between WMs and WRs at baseline or after the LCD period. The LCD resulted in significant decreases in body weight and in several plasma variables in both groups. WMs experienced a significant reduction in insulin secretion in response to an oral-glucose-tolerance test after the LCD; in contrast, no changes in insulin secretion were observed in WRs after the LCD. An ANOVA of scAT gene expression showed that genes regulating fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were regulated differently by the LCD in WM and WR subjects. Conclusion: This study suggests that LCD-induced changes in insulin secretion and scAT gene expression may have the potential to predict successful short-term weight maintenance. This trial was registered at clinicaltrials.gov as NCT00390637
    corecore