160 research outputs found

    Stochastic to deterministic crossover of fractal dimension for a Langevin equation

    Full text link
    Using algorithms of Higuchi and of Grassberger and Procaccia, we study numerically how fractal dimensions cross over from finite-dimensional Brownian noise at short time scales to finite values of deterministic chaos at longer time scales for data generated from a Langevin equation that has a strange attractor in the limit of zero noise. Our results suggest that the crossover occurs at such short time scales that there is little chance of finite-dimensional Brownian noise being incorrectly identified as deterministic chaos.Comment: 12 pages including 3 figures, RevTex and epsf. To appear Phys. Rev. E, April, 199

    Magnon delocalization in ferromagnetic chains with long-range correlated disorder

    Full text link
    We study one-magnon excitations in a random ferromagnetic Heisenberg chain with long-range correlations in the coupling constant distribution. By employing an exact diagonalization procedure, we compute the localization length of all one-magnon states within the band of allowed energies EE. The random distribution of coupling constants was assumed to have a power spectrum decaying as S(k)∝1/kαS(k)\propto 1/k^{\alpha}. We found that for α<1\alpha < 1, one-magnon excitations remain exponentially localized with the localization length Ο\xi diverging as 1/E. For α=1\alpha = 1 a faster divergence of Ο\xi is obtained. For any α>1\alpha > 1, a phase of delocalized magnons emerges at the bottom of the band. We characterize the scaling behavior of the localization length on all regimes and relate it with the scaling properties of the long-range correlated exchange coupling distribution.Comment: 7 Pages, 5 figures, to appear in Phys. Rev.

    The Effect of Contrast Medium SonoVueÂź on the Electric Charge Density of Blood Cells

    Get PDF
    The effect of contrast medium SonoVue¼ on the electric charge density of blood cells (erythrocytes and thrombocytes) was measured using a microelectrophoretic method. We examined the effect of adsorbed H+ and OH− ions on the surface charge of erythrocytes or thrombocytes. Surface charge density values were determined from electrophoretic mobility measurements of blood cells performed at various pH levels. The interaction between solution ions and the erythrocyte’s or thrombocyte’s surface was described by a four-component equilibrium model. The agreement between the experimental and theoretical charge variation curves of the erythrocytes and thrombocytes was good at pH 2–9. The deviation observed at a higher pH may be caused by disregarding interactions between the functional groups of blood cells

    Comparative Proteomic Analysis of Lung Lamellar Bodies and Lysosome-Related Organelles

    Get PDF
    Pulmonary surfactant is a complex mixture of lipids and proteins that is essential for postnatal function. Surfactant is synthesized in alveolar type II cells and stored as multi-bilayer membranes in a specialized secretory lysosome-related organelle (LRO), known as the lamellar body (LB), prior to secretion into the alveolar airspaces. Few LB proteins have been identified and the mechanisms regulating formation and trafficking of this organelle are poorly understood. Lamellar bodies were isolated from rat lungs, separated into limiting membrane and core populations, fractionated by SDS-PAGE and proteins identified by nanoLC-tandem mass spectrometry. In total 562 proteins were identified, significantly extending a previous study that identified 44 proteins in rat lung LB. The lung LB proteome reflects the dynamic interaction of this organelle with the biosynthetic, secretory and endocytic pathways of the type II epithelial cell. Comparison with other LRO proteomes indicated that 60% of LB proteins were detected in one or more of 8 other proteomes, confirming classification of the LB as a LRO. Remarkably the LB shared 37.8% of its proteins with the melanosome but only 9.9% with lamellar bodies from the skin. Of the 229 proteins not detected in other LRO proteomes, a subset of 34 proteins was enriched in lung relative to other tissues. Proteins with lipid-related functions comprised a significant proportion of the LB unique subset, consistent with the major function of this organelle in the organization, storage and secretion of surfactant lipid. The lung LB proteome will facilitate identification of molecular pathways involved in LB biogenesis, surfactant homeostasis and disease pathogenesis

    Transverse Emittance Reduction in Muon Beams by Ionization Cooling

    Full text link
    Accelerated muon beams have been considered for next-generation studies of high-energy lepton-antilepton collisions and neutrino oscillations. However, high-brightness muon beams have not yet been produced. The main challenge for muon acceleration and storage stems from the large phase-space volume occupied by the beam, derived from the muon production mechanism through the decay of pions from proton collisions. Ionization cooling is the technique proposed to decrease the muon beam phase-space volume. Here we demonstrate a clear signal of ionization cooling through the observation of transverse emittance reduction in beams that traverse lithium hydride or liquid hydrogen absorbers in the Muon Ionization Cooling Experiment (MICE). The measurement is well reproduced by the simulation of the experiment and the theoretical model. The results shown here represent a substantial advance towards the realization of muon-based facilities that could operate at the energy and intensity frontiers.Comment: 23 pages and 5 figure

    First demonstration of ionization cooling by the Muon Ionization Cooling Experiment

    Get PDF
    High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions to extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced in the interaction of a proton beam with a target. To produce a high-brightness beam from such a source requires that the phase space volume occupied by the muons be reduced (cooled). Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration has constructed a section of an ionization cooling cell and used it to provide the first demonstration of ionization cooling. We present these ground-breaking measurements.Comment: 19 pages and 6 figure

    Demonstration of cooling by the Muon Ionization Cooling Experiment

    Get PDF
    The use of accelerated beams of electrons, protons or ions has furthered the development of nearly every scientific discipline. However, high-energy muon beams of equivalent quality have not yet been delivered. Muon beams can be created through the decay of pions produced by the interaction of a proton beam with a target. Such ‘tertiary’ beams have much lower brightness than those created by accelerating electrons, protons or ions. High-brightness muon beams comparable to those produced by state-of-the-art electron, proton and ion accelerators could facilitate the study of lepton–antilepton collisions at extremely high energies and provide well characterized neutrino beams1,2,3,4,5,6. Such muon beams could be realized using ionization cooling, which has been proposed to increase muon-beam brightness7,8. Here we report the realization of ionization cooling, which was confirmed by the observation of an increased number of low-amplitude muons after passage of the muon beam through an absorber, as well as an increase in the corresponding phase-space density. The simulated performance of the ionization cooling system is consistent with the measured data, validating designs of the ionization cooling channel in which the cooling process is repeated to produce a substantial cooling effect9,10,11. The results presented here are an important step towards achieving the muon-beam quality required to search for phenomena at energy scales beyond the reach of the Large Hadron Collider at a facility of equivalent or reduced footprint6

    Electron-muon ranger: performance in the MICE muon beam

    Get PDF
    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c

    Electron-muon ranger: performance in the MICE muon beam

    Get PDF
    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100–280 MeV/c
    • 

    corecore