98 research outputs found

    Maximization of higher order eigenvalues and applications

    Full text link
    The present paper is a follow up of our paper \cite{nS}. We investigate here the maximization of higher order eigenvalues in a conformal class on a smooth compact boundaryless Riemannian surface. Contrary to the case of the first nontrivial eigenvalue as shown in \cite{nS}, bubbling phenomena appear

    How large can the first eigenvalue be on a surface of genus two?

    Full text link
    Sharp upper bounds for the first eigenvalue of the Laplacian on a surface of a fixed area are known only in genera zero and one. We investigate the genus two case and conjecture that the first eigenvalue is maximized on a singular surface which is realized as a double branched covering over a sphere. The six ramification points are chosen in such a way that this surface has a complex structure of the Bolza surface. We prove that our conjecture follows from a lower bound on the first eigenvalue of a certain mixed Dirichlet-Neumann boundary value problem on a half-disk. The latter can be studied numerically, and we present conclusive evidence supporting the conjecture.Comment: 20 pages; 4 figure

    Quantitative uniqueness for elliptic equations with singular lower order terms

    Full text link
    We use a Carleman type inequality of Koch and Tataru to obtain quantitative estimates of unique continuation for solutions of second order elliptic equations with singular lower order terms. First we prove a three sphere inequality and then describe two methods of propagation of smallness from sets of positive measure.Comment: 23 pages, v2 small changes are done and some mistakes are correcte

    Maximizing Neumann fundamental tones of triangles

    Full text link
    We prove sharp isoperimetric inequalities for Neumann eigenvalues of the Laplacian on triangular domains. The first nonzero Neumann eigenvalue is shown to be maximal for the equilateral triangle among all triangles of given perimeter, and hence among all triangles of given area. Similar results are proved for the harmonic and arithmetic means of the first two nonzero eigenvalues

    The mean curvature of cylindrically bounded submanifolds

    Full text link
    We give an estimate of the mean curvature of a complete submanifold lying inside a closed cylinder B(r)×RℓB(r)\times\R^{\ell} in a product Riemannian manifold Nn−ℓ×RℓN^{n-\ell}\times\R^{\ell}. It follows that a complete hypersurface of given constant mean curvature lying inside a closed circular cylinder in Euclidean space cannot be proper if the circular base is of sufficiently small radius. In particular, any possible counterexample to a conjecture of Calabion complete minimal hypersurfaces cannot be proper. As another application of our method, we derive a result about the stochastic incompleteness of submanifolds with sufficiently small mean curvature.Comment: First version (December 2008). Final version, including new title (February 2009). To appear in Mathematische Annale

    The Volume of a Local Nodal Domain

    Full text link
    Let M either be a closed real analytic Riemannian manifold or a closed smooth Riemannian surface. We estimate from below the volume of a nodal domain component in an arbitrary ball provided that this component enters the ball deeply enough.Comment: 21 pages; introduction improved putting the problem in a larger context

    Geometric approach to nonvariational singular elliptic equations

    Full text link
    In this work we develop a systematic geometric approach to study fully nonlinear elliptic equations with singular absorption terms as well as their related free boundary problems. The magnitude of the singularity is measured by a negative parameter (γ−1)(\gamma -1), for 0<γ<10 < \gamma < 1, which reflects on lack of smoothness for an existing solution along the singular interface between its positive and zero phases. We establish existence as well sharp regularity properties of solutions. We further prove that minimal solutions are non-degenerate and obtain fine geometric-measure properties of the free boundary F=∂{u>0}\mathfrak{F} = \partial \{u > 0 \}. In particular we show sharp Hausdorff estimates which imply local finiteness of the perimeter of the region {u>0}\{u > 0 \} and Hn−1\mathcal{H}^{n-1} a.e. weak differentiability property of F\mathfrak{F}.Comment: Paper from D. Araujo's Ph.D. thesis, distinguished at the 2013 Carlos Gutierrez prize for best thesis, Archive for Rational Mechanics and Analysis 201

    Nonlinear Diffusion Through Large Complex Networks Containing Regular Subgraphs

    Full text link
    Transport through generalized trees is considered. Trees contain the simple nodes and supernodes, either well-structured regular subgraphs or those with many triangles. We observe a superdiffusion for the highly connected nodes while it is Brownian for the rest of the nodes. Transport within a supernode is affected by the finite size effects vanishing as N→∞.N\to\infty. For the even dimensions of space, d=2,4,6,...d=2,4,6,..., the finite size effects break down the perturbation theory at small scales and can be regularized by using the heat-kernel expansion.Comment: 21 pages, 2 figures include
    • …
    corecore