1,681 research outputs found

    Evaluation of language function under awake craniotomy.

    Get PDF
    覚醒下手術は現在開頭術中に言語機能を確認し温存に寄与することができる唯一の確立された方法である.本稿では術前術中の言語検査の実際とその臨床的有用性について総論する

    Repeated freeze–thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons

    Get PDF
    Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze–thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze–thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze–thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze–thaw cycles. In patella tendons, the ultimate stress, Young’s modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze–thaw cycles. In conclusion, we identified that cells surviving after freeze–thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze–thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity

    A novel underuse model shows that inactivity but not ovariectomy determines the deteriorated material properties and geometry of cortical bone in the tibia of adult rats

    Get PDF
    Our goal in this study was to determine to what extent the physiologic consequences of ovariectomy (OVX) in bones are exacerbated by a lack of daily activity such as walking. We forced 14-week-old female rats to be inactive for 15 weeks with a unique experimental system that prevents standing and walking while allowing other movements. Tibiae, femora, and 4th lumbar vertebrae were analyzed by peripheral quantitative computed tomography (pQCT), microfocused X-ray computed tomography (micro-CT), histology, histomorphometry, Raman spectroscopy, and the three-point bending test. Contrary to our expectation, the exacerbation was very much limited to the cancellous bone parameters. Parameters of femur and tibia cortical bone were affected by the forced inactivity but not by OVX: (1) cross-sectional moment of inertia was significantly smaller in Sham-Inactive rat bones than that of their walking counterparts; (2) the number of sclerostin-positive osteocytes per unit cross-sectional area was larger in Sham-Inactive rat bones than in Sham-Walking rat bones; and (3) material properties such as ultimate stress of inactive rat tibia was lower than that of their walking counterparts. Of note, the additive effect of inactivity and OVX was seen only in a few parameters, such as the cancellous bone mineral density of the lumbar vertebrae and the structural parameters of cancellous bone in the lumbar vertebrae/tibiae. It is concluded that the lack of daily activity is detrimental to the strength and quality of cortical bone in the femur and tibia of rats, while lack of estrogen is not. Our inactive rat model, with the older rats, will aid the study of postmenopausal osteoporosis, the etiology of which may be both hormonal and mechanical

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore