362 research outputs found

    The No-defect Conjecture: Cosmological Implications

    Get PDF
    When the topology of the universe is non trivial, it has been shown that there are constraints on the network of domain walls, cosmic strings and monopoles. I generalize these results to textures and study the cosmological implications of such constraints. I conclude that a large class of multi-connected universes with topological defects accounting for structure formation are ruled out by observation of the cosmic microwave background.Comment: 4 pages, 1 figure, accepted for publication as a brief report in Phys. Rev.

    B-Cell Activating Factor Secreted by Neutrophils Is a Critical Player in Lung Inflammation to Cigarette Smoke Exposure.

    Get PDF
    Cigarette smoke (CS) is the major cause of chronic lung injuries, such as chronic obstructive pulmonary disease (COPD). In patients with severe COPD, tertiary lymphoid follicles containing B lymphocytes and B cell-activating factor (BAFF) overexpression are associated with disease severity. In addition, BAFF promotes adaptive immunity in smokers and mice chronically exposed to CS. However, the role of BAFF in the early phase of innate immunity has never been investigated. We acutely exposed C57BL/6J mice to CS and show early BAFF expression in the bronchoalveolar space and lung tissue that correlates to airway neutrophil and macrophage influx. Immunostaining analysis revealed that neutrophils are the major source of BAFF. We confirmed in vitro that neutrophils secrete BAFF in response to cigarette smoke extract (CSE) stimulation. Antibody-mediated neutrophil depletion significantly dampens lung inflammation to CS exposure but only partially decreases BAFF expression in lung tissue and bronchoalveolar space suggesting additional sources of BAFF. Importantly, BAFF deficient mice displayed decreased airway neutrophil recruiting chemokines and neutrophil influx while the addition of exogenous BAFF significantly enhanced this CS-induced neutrophilic inflammation. This demonstrates that BAFF is a key proinflammatory cytokine and that innate immune cells in particular neutrophils, are an unconsidered source of BAFF in early stages of CS-induced innate immunity

    The role of functional single nucleotide polymorphisms of the human glucocorticoid receptor gene NR3C1 in Polish patients with bronchial asthma

    Get PDF
    N363S and ER22/23EK polymorphisms observed within glucocorticoid receptor gene (NR3C1) may play an important role in the development of bronchial asthma. NR3C1 gene is associated with an altered sensitivity to GCs. The aim of the research project was to study the correlation between this NR3C1 gene polymorphisms and occurrence of asthma in the population of Polish asthmatics. Peripheral blood was obtained from 207 healthy volunteers and 221 asthma patients. Genotyping was carried out with PCR-RFLP method. In the groups of patients with uncontrolled moderate asthma and uncontrolled severe disease, the genotype distribution for the investigated polymorphisms was as follows: N363S-AA, AG, GG occurring with 0.881/0.073/0.046 frequency and ER22/23EK-GG, GA, AA occurring with 0.963/0.037/0.000 frequency. Chi-square analysis revealed a significantly different (P < 0.05) distribution between cases and controls for the N363S polymorphisms. The N363S polymorphism of NR3C1 gene is significantly associated with bronchial asthma, susceptibility to the development of moderate to severe form of uncontrolled bronchial asthma

    Microwave Background Anisotropies and Nonlinear Structures I. Improved Theoretical Models

    Full text link
    A new method is proposed for modelling spherically symmetric inhomogeneities in the Universe. The inhomogeneities have finite size and are compensated, so they do not exert any measurable gravitational force beyond their boundary. The region exterior to the perturbation is represented by a Friedmann-Robertson-Walker (FRW) Universe, which we use to study the anisotropy in the cosmic microwave background (CMB) induced by the cluster. All calculations are performed in a single, global coordinate system, with nonlinear gravitational effects fully incorporated. An advantage of the gauge choices employed here is that the resultant equations are essentially Newtonian in form. Examination of the problem of specifying initial data shows that the new model presented here has many advantages over `Swiss cheese' and other models. Numerical implementation of the equations derived here is described in a subsequent paper.Comment: 10 pages, 4 figures; Monthly Notices of the Royal Astronomical Society (MNRAS), in pres

    Generating G2G_2--cosmologies with perfect fluid in dilaton gravity

    Full text link
    We present a method for generating exact diagonal G2G_2-cosmological solutions in dilaton gravity coupled to a radiation perfect fluid and with a cosmological potential of a special type. The method is based on the symmetry group of the system of G2G_2-field equations. Several new classes of explicit exact inhomogeneous perfect fluid scalar-tensor cosmologies are presented.Comment: 10 pages, LaTe

    Microwave background anisotropies and non-linear structures II. Numerical computations

    Full text link
    A new method for modelling spherically symmetric inhomogeneities is applied to the formation of clusters in an expanding Universe. We impose simple initial velocity and density perturbations of finite extent and we investigate the subsequent evolution of the density field. Photon paths are also calculated, allowing a detailed consideration of gravitational lensing effects and microwave background anisotropies induced by the cluster. We apply the method to modelling high-redshift clusters and, in particular, we consider the reported microwave decrement observed towards the quasar pair PC1643+4631 A&B. We also consider the effect on the primordial microwave background power spectrum due to gravitational lensing by a population of massive high-redshift clusters.Comment: 15 pages, 23 figures; Monthly Notices of the Royal Astronomical Society (MNRAS), in pres

    DT/T beyond linear theory

    Full text link
    The major contribution to the anisotropy of the temperature of the Cosmic Microwave Background (CMB) radiation is believed to come from the interaction of linear density perturbations with the radiation previous to the decoupling time. Assuming a standard thermal history for the gas after recombination, only the gravitational field produced by the linear density perturbations present on a Ω≠1\Omega\neq 1 universe can generate anisotropies at low z (these anisotropies would manifest on large angular scales). However, secondary anisotropies are inevitably produced during the nonlinear evolution of matter at late times even in a universe with a standard thermal history. Two effects associated to this nonlinear phase can give rise to new anisotropies: the time-varying gravitational potential of nonlinear structures (Rees-Sciama RS effect) and the inverse Compton scattering of the microwave photons with hot electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two effects can produce distinct imprints on the CMB temperature anisotropy. We discuss the amplitude of the anisotropies expected and the relevant angular scales in different cosmological scenarios. Future sensitive experiments will be able to probe the CMB anisotropies beyong the first order primary contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance School on Astrophysics "The universe at high-z, large-scale structure and the cosmic microwave background". To be publised by Springer-Verla

    Seasonal Distribution, Aggregation, and Habitat Selection of Common Carp in Clear Lake, Iowa

    Get PDF
    The common carp Cyprinus carpio is widely distributed and frequently considered a nuisance species outside its native range. Common carp are abundant in Clear Lake, Iowa, where their presence is both a symptom of degradation and an impediment to improving water quality and the sport fishery. We used radiotelemetry to quantify seasonal distribution, aggregation, and habitat selection of adult and subadult common carp in Clear Lake during 2005–2006 in an effort to guide future control strategies. Over a 22-month period, we recorded 1,951 locations of 54 adults and 60 subadults implanted with radio transmitters. Adults demonstrated a clear tendency to aggregate in an offshore area during the late fall and winter and in shallow, vegetated areas before and during spring spawning. Late-fall and winter aggregations were estimated to include a larger percentage of the tracked adults than spring aggregations. Subadults aggregated in shallow, vegetated areas during the spring and early summer. Our study, when considered in combination with previous research, suggests repeatable patterns of distribution, aggregation, and habitat selection that should facilitate common carp reduction programs in Clear Lake and similar systems

    Europe-wide spatial trends in copper and imidacloprid sensitivity of macroinvertebrate assemblages

    Get PDF
    Exposure to synthetic chemicals, such as pesticides and pharmaceuticals, affects freshwater communities at broad spatial scales. This risk is commonly managed in a prospective environmental risk assessment (ERA). Relying on generic methods, a few standard test organisms, and safety factors to account for uncertainty, ERA determines concentrations that are assumed to pose low risks to ecosystems. Currently, this procedure neglects potential variation in assemblage sensitivity among ecosystem types and recommends a single low-risk concentration for each compound. Whether systematic differences in assemblage sensitivity among ecosystem types exist or their size, are currently unknown. Elucidating spatial patterns in sensitivity to chemicals could therefore enhance ERA precision and narrow a fundamental knowledge gap in ecology, the Hutchinsonian shortfall. We analyzed whether taxonomic turnover between field-sampled macroinvertebrate assemblages of different broad river types across Europe results in systematic differences in assemblage sensitivity to copper and imidacloprid. We used an extensive database of macroinvertebrate assemblage compositions throughout Europe and employed a hierarchical species sensitivity distribution model to predict the concentration that would be harmful to 5% of taxa (HC5) in each assemblage. Predicted HC5H{C}_{5} H C 5 values varied over several orders of magnitude. However, variation within the 95% highest density intervals remained within one order of magnitude. Differences between the river types were minor for imidacloprid and only slightly higher for copper. The largest difference between river-type-specific median HC5H{C}_{5} H C 5 values was a factor of 3.1. This level of variation is below the assessment factors recommended by the European Food Safety Authority and therefore would be captured in the current ERA for plant protection products. We conclude that the differences in taxonomic composition between broad river types translate into relatively small differences in macroinvertebrate assemblage sensitivity toward the evaluated chemicals at the European scale. However, systematic differences in bioavailability and multi-stressor context were not evaluated and might exacerbate the differences in the ecological effects of chemicals among broad river types in real-world ecosystems

    Simulated Effects of Recruitment Variability, Exploitation, and Reduced Habitat Area on the Muskellunge Population in Shoepack Lake, Voyageurs National Park, Minnesota

    Get PDF
    The genetically unique population of muskellunge Esox masquinongy inhabiting Shoepack Lake in Voyageurs National Park, Minnesota, is potentially at risk for loss of genetic variability and long-term viability. Shoepack Lake has been subject to dramatic surface area changes from the construction of an outlet dam by beavers Castor canadensis and its subsequent failure. We simulated the long-term dynamics of this population in response to recruitment variation, increased exploitation, and reduced habitat area. We then estimated the effective population size of the simulated population and evaluated potential threats to long-term viability, based on which we recommend management actions to help preserve the long-term viability of the population. Simulations based on the population size and habitat area at the beginning of a companion study resulted in an effective population size that was generally above the threshold level for risk of loss of genetic variability, except when fishing mortality was increased. Simulations based on the reduced habitat area after the beaver dam failure and our assumption of a proportional reduction in population size resulted in an effective population size that was generally below the threshold level for risk of loss of genetic variability. Our results identified two potential threats to the long-term viability of the Shoepack Lake muskellunge population, reduction in habitat area and exploitation. Increased exploitation can be prevented through traditional fishery management approaches such as the adoption of no-kill, barbless hook, and limited entry regulations. Maintenance of the greatest possible habitat area and prevention of future habitat area reductions will require maintenance of the outlet dam built by beavers. Our study should enhance the long-term viability of the Shoepack Lake muskellunge population and illustrates a useful approach for other unique populations
    • 

    corecore