1,541 research outputs found

    On the cosmic ray diffusion in a violent interstellar medium

    Get PDF
    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM

    Modeles mathematiques du mode temps monopartage des systemes informatiques d’entreprise

    Get PDF
    Principles of the models development of optimum management processes of access in the computers networks of the corporative information systems are reviewed and the results of the adequacy estimation of these models are presented.Dans le travail nous considérons les principes de conception des modèles de processus optimaux de contrôle d’accès dans les réseaux informatiques des systèmes informatiques d’entreprise et présentons les résultats d’évaluation de l’adéquation de ces modèles

    Non-Maxwellian electron distributions in clusters of galaxies

    Full text link
    Thermal X-ray spectra of clusters of galaxies and other sources are commonly calculated assuming Maxwellian electron distributions. There are situations where this approximation is not valid, for instance near interfaces of hot and cold gas and near shocks. The presence of non-thermal electrons affects the X-ray spectrum. To study the role of these electrons in clusters and other environments, an efficient algorithm to calculate the X-ray spectra is needed. We approximate an arbitrary electron distribution by the sum of Maxwellian components. The decomposition is done using either a genetic algorithm or an analytical approximation. The X-ray spectrum is then evaluated using a linear combination of those Maxwellian components. Our method is fast and leads to an accurate evaluation of the spectrum. The use of Maxwellian components allows to use the standard collisional rates that are available in plasma codes such as SPEX. We give an example of a spectrum for the supra-thermal electron distribution behind a shock in a cluster of galaxies. The relative intensities of the satellite lines in such a spectrum are sensitive to the presence of the supra-thermal electrons. These lines can only be investigated with high spectral resolution. We show that the instruments on future missions like Astro-H and IXO will be able to demonstrate the presence or absence of these supra-thermal electrons.Comment: 6 pages, 4 figures, accepted for publication in Astronomy and Astrophysics, main journa

    Effect of parallel magnetic field on the Zero Differential Resistance State

    Full text link
    The non-linear zero-differential resistance state (ZDRS) that occurs for highly mobile two-dimensional electron systems in response to a dc bias in the presence of a strong magnetic field applied perpendicular to the electron plane is suppressed and disappears gradually as the magnetic field is tilted away from the perpendicular at fixed filling factor ν\nu. Good agreement is found with a model that considers the effect of the Zeeman splitting of Landau levels enhanced by the in-plane component of the magnetic field.Comment: 4 pages, 4 figure

    Wideband TEM-TE11 mode convertor for HPM applications

    Get PDF
    The mode convertor design of fundamental coaxial TEM to the lowest asymmetric TE11-mode of a circular waveguide was proposed and optimized with ANSYS HFSS software. It includes axially aligned parts: the input coaxial line with the high voltage insulator, conical coaxial matching line, wave-coax transition section and output circular waveguide. The most losses in this type of convertor caused by the wave of coaxial TE11-mode running back to the microwave source. To minimize these losses, there is the matching conical coaxial line with the cut-off insertion for coaxial TE11-mode. Characteristics of the convertor are as follows: the maximum input peak power – 3GW, the input impedance – 28Ohm, the central operating frequency – 1.14GHz. The power conversion efficiency to the output mode is from 90% upto 100% in the frequency band of 20%

    Non-linear magnetotransport in microwave-illuminated two-dimensional electron systems

    Full text link
    We study magnetoresistivity oscillations in a high-mobility two-dimensional electron system subject to both microwave and dc electric fields. First, we observe that the oscillation amplitude is a periodic function of the inverse magnetic field and is strongly suppressed at microwave frequencies near half-integers of the cyclotron frequency. Second, we obtain a complete set of conditions for the differential resistivity extrema and saddle points. These findings indicate the importance of scattering without microwave absorption and a special role played by microwave-induced scattering events antiparallel to the electric field.Comment: 4 pages, 4 figure

    The 511 keV emission from positron annihilation in the Galaxy

    Full text link
    The first gamma-ray line originating from outside the solar system that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990's with OSSE/CGRO showed that the emission is strongly concentrated towards the Galactic bulge. In the 2000's, the SPI instrument aboard ESA's INTEGRAL gamma-ray observatory allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge/disk luminosity ratio is larger than observed in any other wavelength. This mapping prompted a number of novel explanations, including rather "exotic ones (e.g. dark matter annihilation). However, conventional astrophysical sources, like type Ia supernovae, microquasars or X-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, contrary to the rather well understood propagation of high energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low energy (~MeV) positrons in the turbulent, magnetized interstellar medium, still remains a formidable challenge. We review the spectral and imaging properties of the observed 511 keV emission and we critically discuss candidate positron sources and models of positron propagation in the Galaxy.Comment: 62 pages, 35 figures. Review paper to appear in Reviews of Modern Physic

    Tempestuous life beyond R500: X-ray view on the Coma cluster with SRG/eROSITA. II. Shock & Relic

    Full text link
    This is the second paper in a series of studies of the Coma cluster using the SRG/eROSITA X-ray data obtained during the calibration and performance verification phase of the mission. Here, we focus on the region adjacent to the radio source 1253+275 (radio relic, RR, hereafter). We show that the X-ray surface brightness exhibits its steepest gradient at 79\sim 79' (2.2MpcR200c\sim 2.2\,{\rm Mpc}\approx R_{200c}), which is almost co-spatial to the outer edge of the RR. As in the case of several other relics, the Mach number of the shock derived from the X-ray surface brightness profile (MX1.9M_X\approx 1.9) appears to be lower than needed to explain the slope of the integrated radio spectrum in the diffusive shock acceleration (DSA) model (MR3.5M_R\approx 3.5) if the magnetic field is uniform and the radiative losses are fast. However, the shock geometry is plausibly much more complicated than a spherical wedge centered on the cluster, given the non-trivial correlation between radio, X-ray, and SZ images. While the complicated shock geometry alone might cause a negative bias in MXM_X, we speculate on a few other possibilities that may affect the MXM_X-MRM_R relation, including the shock substructure that might be modified by the presence of non-thermal filaments stretching across the shock and the propagation of relativistic electrons along the non-thermal filaments with a strong magnetic field. We also discuss the "history" of the radio galaxy NGC4789, which is located ahead of the relic in the context of the Coma-NGC4839 merger scenario.Comment: Replaced with the accepted versio

    Hard X-ray Emission Clumps in the gamma-Cygni Supernova Remnant: an INTEGRAL-ISGRI View

    Get PDF
    Spatially resolved images of the galactic supernova remnant G78.2+2.1 (gamma-Cygni) in hard X-ray energy bands from 25 keV to 120 keV are obtained with the IBIS-ISGRI imager aboard the International Gamma-Ray Astrophysics Laboratory INTEGRAL. The images are dominated by localized clumps of about ten arcmin in size. The flux of the most prominent North-Western (NW) clump is (1.7 +/- 0.4) 10^{-11} erg/cm^2/s in the 25-40 keV band. The observed X-ray fluxes are in agreement with extrapolations of soft X-ray imaging observations of gamma-Cygni by ASCA GIS and spatially unresolved RXTE PCA data. The positions of the hard X-ray clumps correlate with bright patches of optical line emission, possibly indicating the presence of radiative shock waves in a shocked cloud. The observed spatial structure and spectra are consistent with model predictions of hard X-ray emission from nonthermal electrons accelerated by a radiative shock in a supernova interacting with an interstellar cloud, but the powerful stellar wind of the O9V star HD 193322 is a plausible candidate for the NW source as well.Comment: 5 pages, 5 figures, Astronomy and Astrophysics Letter

    Diffusive Radiation in One-dimensional Langmuir Turbulence

    Full text link
    We calculate spectra of radiation produced by a relativistic particle in the presence of one-dimensional Langmuir turbulence which might be generated by a streaming instability in the plasma, in particular, in the shock front or at the shock-shock interactions. The shape of the radiation spectra is shown to depend sensitively on the angle between the particle velocity and electric field direction. The radiation spectrum in the case of exactly transverse particle motion is degenerate and similar to that of spatially uniform Langmuir oscillations. In case of oblique propagation, the spectrum is more complex, it consists of a number of power-law regions and may contain a distinct high-frequency spectral peak. %at \omega=2\omega\pe \gamma^2. The emission process considered is relevant to various laboratory plasma settings and for astrophysical objects as gamma-ray bursts and collimated jets.Comment: 4 pages, 1 figure, accepted for Phys. Rev.
    corecore