1,041 research outputs found
Plasma disposition, concentration in the hair, and anthelmintic efficacy of eprinomectin after topical administration in donkeys
Objective-To investigate plasma disposition, concentration in the hair, and anthelmintic efficacy of eprinomectin after topical administration in donkeys. Animals-12 donkeys naturally infected with strongyle nematodes. Procedures-The pour-on formulation of eprinomectin approved for use in cattle was administered topically to donkeys at a dosage of 0.5 mg/kg. Heparinized blood samples and hair samples were collected at various times between 1 hour and 40 days after administration. Samples were analyzed via high-performance liquid chromatography with fluorescence detection. Fecal strongyle egg counts were performed by use of a modified McMaster technique before and at weekly intervals for 8 weeks after treatment. Results-Plasma concentration and systemic availability of eprinomectin were relatively higher in donkeys, compared with values reported for other animal species. Concerning the anthelmintic efficacy against strongyle nematodes, eprinomectin was completely effective (100%) on days 7 and 14 and highly effective (> 99%) until the end of the study at 56 days after treatment. No abnormal clinical signs or adverse reactions were observed for any donkeys after treatment. Conclusions and Clinical Relevance-Eprinomectin had excellent safety. The relatively high plasma concentration after topical administration could result in use of eprinomectin for the control and treatment of parasitic diseases in donkeys
1-Methyl-2,3-dihydro-1H-benzimidazole-2-selone
The title compound C8H8N2Se, is the product of the reaction of 2-chloro-1-methylbenzimidazole with sodium hydroselenide. The molecule is almost planar (r.m.s. deviation = 0.041 Å) owing to the presence of the long chain of conjugated bonds (Se=C—NMe—C=C—C=C—C=C—NH). The C=Se bond length [1.838 (2) Å] corresponds well to those found in the close analogs and indicates its pronounced double-bond character. In the crystal, molecules form helicoidal chains along the b axis by means of N—H⋯Se hydrogen bonds
Video fire detection - Review
Cataloged from PDF version of article.This is a review article describing the recent developments in Video based Fire Detection (VFD). Video
surveillance cameras and computer vision methods are widely used in many security applications. It is
also possible to use security cameras and special purpose infrared surveillance cameras for fire detection.
This requires intelligent video processing techniques for detection and analysis of uncontrolled fire
behavior. VFD may help reduce the detection time compared to the currently available sensors in both
indoors and outdoors because cameras can monitor “volumes” and do not have transport delay that the
traditional “point” sensors suffer from. It is possible to cover an area of 100 km2 using a single pan-tiltzoom
camera placed on a hilltop for wildfire detection. Another benefit of the VFD systems is that they
can provide crucial information about the size and growth of the fire, direction of smoke propagation.
© 2013 Elsevier Inc. All rights reserve
(7aR*,12bS*)-8,12b-Dihydro-7aH-indeno[1′,2′:5,6][1,4]selenazino[2,3,4-ij]quinolin-13-ium hydrogen sulfate
In the title compound, C18H14NSe+·HSO4
−, the cyclopentene ring in the cation has an envelope conformation while the central six-membered 1,4-selenazine ring adopts a sofa conformation. The dihedral angle between the planes of the terminal benzene rings is 68.08 (11)°. In the crystal, the anions form chains along the c axis through O—H⋯O hydrogen bonds. Weak C—H⋯O and C—H⋯π hydrogen bonds, as well as attractive Se⋯Se [3.5608 (8) Å] interactions, further consolidate the crystal structure
1,3-Benzothiazole-2(3H)-selone
The title compound, C7H5NSSe, is the product of the reaction of 2-chlorobenzothiazole with sodium hydroselenide. The molecule is almost planar (r.m.s. deviation = 0.018 Å) owing to the presence of the long chain of conjugated bonds (Se=C—N—C=C—C=C—C=C). The geometrical parameters correspond well to those of the analog N-methylbenzothiazole-2(3H)-selone, demonstrating that the S atom does not take a significant role in the electron delocalization within the molecule. In the crystal, molecules form centrosymmetric dimers by means of intermolecular N—H⋯Se hydrogen bonds. The dimers have a nonplanar ladder-like structure. Furthermore, the dimers are linked into ribbons propagating in [010] by weak attractive Se⋯S [3.7593 (4) Å] interactions
Fundus topographical distribution patterns of ocular toxoplasmosis
BACKGROUND: To establish topographic maps and determine fundus distribution patterns of ocular toxoplasmosis (OT) lesions. METHODS: In this retrospective study, patients who presented with OT to ophthalmology clinics from four countries (Argentina, Turkey, UK, USA) were included. Size, shape and location of primary (1°)/recurrent (2°) and active/inactive lesions were converted into a two-dimensional retinal chart by a retinal drawing software. A final contour map of the merged image charts was then created using a custom Matlab programme. Descriptive analyses were performed. RESULTS: 984 lesions in 514 eyes of 464 subjects (53% women) were included. Mean area of all 1° and 2° lesions was 5.96±12.26 and 5.21±12.77 mm2, respectively. For the subset group lesions (eyes with both 1° and 2° lesions), 1° lesions were significantly larger than 2° lesions (5.52±6.04 mm2 vs 4.09±8.90 mm2, p=0.038). Mean distances from foveola to 1° and 2° lesion centres were 6336±4267 and 5763±3491 µm, respectively. The majority of lesions were found in temporal quadrant (p<0.001). Maximum overlap of all lesions was at 278 µm inferotemporal to foveola. CONCLUSION: The 1° lesions were larger than 2° lesions. The 2° lesions were not significantly closer to fovea than 1° lesions. Temporal quadrant and macular region were found to be densely affected underlining the vision threatening nature of the disease
Improvement of regeneration in pepper: a recalcitrant species
[EN] Organogenesis is influenced by factors like genotype, type of explant, culture medium components, and incubation conditions. The influence of ethylene, which can be produced in the culture process, can also be a limiting factor in recalcitrant species like pepper. In this work, bud induction was achieved from cotyledons and hypocotyls-from eight pepper cultivars-on Murashige and Skoog (MS) medium supplemented with 22.2 mu M 6-benzyladenine (6BA) and 5.71 mu M indole-3-acetic acid (IAA), in media with or without silver nitrate (SN) (58.86 mu M), a suppressor of ethylene action. In the SN-supplemented medium, the frequencies of explants with buds and with callus formation were lower in both kinds of explant, but higher numbers of developed shoots were isolated from explants cultured on SN. Bud elongation was better in medium with gibberellic acid (GA(3)) (2.88 mu M) than in medium free of growth regulators or supplemented with 1-aminocyclopropane-1-carboxylic acid (ACC) at 34.5 mu M. However, isolation of shoots was difficult and few plants were recovered. The effect of adding SN following bud induction (at 7 d) and that of dark incubation (the first 7 d of culture) was also assessed in order to improve the previous results. When SN was added after bud induction, similar percentages of bud induction were found for cotyledons (average frequency 89.37% without SN and 94.37% with SN) whereas they doubled in hypocotyls (50% without SN and 87.7% with SN). In addition, in both kinds of explant, the number of developed plants able to be transferred to soil (developed and rooted) was greatly increased by SN. Dark incubation does not seem to improve organogenesis in pepper, and hypocotyl explants clearly represent a better explant choice-with respect to cotyledonary explants-for the pepper cultivars assayed.We thank the COMAV germplasm bank at Universitat Politecnica de Valencia and the Arid Lands Institute for pepper seeds and the Tunisian Ministry of Higher Education and Scientific Research who fund N. Gammoudi's stay.Gammoudi, N.; San Pedro-Galan, T.; Ferchichi, A.; Gisbert Domenech, MC. (2018). Improvement of regeneration in pepper: a recalcitrant species. In Vitro Cellular & Developmental Biology - Plant. 54(2):145-153. https://doi.org/10.1007/s11627-017-9838-1S145153542Ashrafuzzaman M, Hossain MM, Razi Ismail M, Shahidul Haque M, Shahidullah SM, Uz Zaman S (2009) Regeneration potential of seedling explants of chilli (Capsicum annuum). Afr J Biotechnol 8:591–596Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297Brown DC, Thorpe TA (1995) Crop improvement through tissue culture. World J Microbiol Biotechnol 11:409–415Carvalho MAF, Paiva R, Stein VC, Herrera RC, Porto JMP, Vargas DP, Alves E (2014) Induction and morpho-ultrastructural analysis of organogenic calli of a wild passion fruit. Braz Arch Biol Technol 57:581–859Christopher T, Rajam MV (1996) Effect of genotype, explant and medium on in vitro regeneration of red pepper. Plant CellTiss Org Cult 46:245–250Dabauza M, Peña L (2001) High efficiency organogenesis in sweet pepper (Capsicum annuum L.) tissues from different seedling explants. Plant Growth Regul 33:221–229De Filippis LF (2014) Crop improvement through tissue culture. In: Ahmad P, Wani MR, Azooz MM, Tran LSP (eds) Improvement of crops in the era of climate changes, vol 1. Springer, New York, pp 289–346Gammoudi N, Ben Yahia L, Lachiheb B, Ferchichi A (2016) Salt response in pepper (Capsicum annuum L.): components of photosynthesis inhibition, proline accumulation and K+/Na+ selectivity. JJ Aridland Agri 2:1–12González A, Arigita L, Majada J, Sánchez Tamés R (1997) Ethylene involvement in in vitro organogenesis and plant growth of Populus tremula L. Plant Growth Regul 22:1–6Grozeva S, Rodeva V, Todorova V (2012) In vitro shoot organogenesis in Bulgarian sweet pepper (Capsicum annuum L.) varieties. EJBio 8:39–44Gunay AL, Rao PS (1978) In vitro plant regeneration from hypocotyls and cotyledon explants of red pepper (Capsicum). Plant Sci Lett 11:365–372Huxter TJ, Thorpe TA, Reid DM (1981) Shoot initiation in light- and dark-grown tobacco callus: the role of ethylene. Physiol Plant 53:319–326Hyde CL, Phillips GC (1996) Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro-Plant 32:72–80Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48Kumar AO, Rupavathi T, Tata SS (2012) Adventitious shoot bud induction in chili pepper (Capsicum annuum L. cv. X-235). In J Sci Nat 3:192–196Kumar PP, Lakshmanan P, Thorpe TA (1998) Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev Biol Plant 34:94–103Liu W, Parrott WA, Hildebrand DF, Collins GB, Williams EG (1990) Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Rep 9:360–364Maligeppagol M, Manjula R, Navale PM, Babu KP, Kumbar BM, Laxman RH (2016) Genetic transformation of chilli (Capsicum annuum L.) with Dreb1A transcription factor known to impart drought tolerance. Indian J Biotechnol 15:17–24Mantiri FR, Kurdyukov S, Chen SK, Rose RJ (2008) The transcription factor MtSERF1 may function as a nexus between stress and development in somatic embryogenesis in Medicago truncatula. Plant Signal Behav 3:498–500Mezghani N, Jemmali A, Elloumi N, Gargouri-Bouzid R, Kintzios S (2007) Morpho-histological study on shoot bud regeneration in cotyledon cultures of pepper (Capsicum annuum). Biologia 62:704–710Mohamed-Yasseen Y (2001) Influence of agar and activated charcoal on uptake of gibberellin and plant morphogenesis in vitro. In Vitro Cell Dev Biol - Plant 37:204–205Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant growth regulators III: ethylene. In: George EF, Hall MA, Klerk G-JD (eds) Plant propagation by tissue culture, vol 1, 3rdedn. Springer, Dordrecht, The Netherlands, pp 239–248Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Nogueira RC, Paiva R, de Oliveira LM, Soares GA, Soares FP, Castro AHF, Paiva PDO (2007) Calli induction from leaf explants of murici-pequeno (Byrsonima intermedia A. Juss.) Ciênc Agrotec 31:366–370Ochoa-Alejo N, Ramirez-Malagon R (2001) In vitro chili pepper biotechnology. In Vitro Cell Devl Biol Plant 37:701–729Orlińska M, Nowaczy P (2015) In vitro plant regeneration of 4 Capsicum spp. genotypes using different explant types. Turk J Biol 39:60–68Reid MS (1995) Ethylene in plant growth, development and senescence. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology, 2nd edn. Kluwer Acad Publ, Dordrecht, The Netherlands, pp 486–508Sanatombi K, Sharma GJ (2008) In vitro plant regeneration in six cultivars of Capsicum spp. using different explants. Biol Plant 52:141–145Santana-Buzzy N, Canto-Flick A, Barahona-Pérez F, Montalvo-Peniche MC, Zapata-Castillo PY, Solís-Ruiz A, Zaldívar-Collí A, Gutiérrez-Alonso O, Miranda-Ham ML (2005) Regeneration of habanero pepper (Capsicum chinense Jacq.) via organogenesis. Hortscience 40:1829–1831Santana-Buzzy N, Canto-Flick A, Iglesias-Andreu LG, Montalvo-Peniche MC, López-Puc G, Barahona-Pérez F (2006) Improvement of in vitro culturing of habanero pepper by inhibition of ethylene effects. Hortscience 41:405–409Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774Shah SH, Ali S, Jan SA, Din J, Ali GM (2014) Assessment of silver nitrate on callus induction and in vitro shoot regeneration in tomato (Solanum lycopersicum Mill.) Pakistan J Bot 46:2163–2172Steinitz B, Wolf D, Matzevitch-Josef T, Zelcer A (1999) Regeneration in vitro and genetic transformation of pepper (Capsicum spp.): the current state of the art. Capsicum Eggplant Plant Newsletter 18:9–15Tamimi SM (2015) Effects of ethylene inhibitors, silver nitrate (AgNO3), cobalt chloride (CoCl2) and aminooxyacetic acid (AOA), on in vitro shoot induction and rooting of banana (Musa acuminata L.) Afr J Biotechnol 14:2510–2516Trujillo-Moya C, Gisbert C (2012) The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell Tissue Organ Cult 111:41–48Yasmin S, Mensuali-Sodi A, Perata P, Pucciariello C (2014) Ethylene influences in vitro regeneration frequency in the FR13A rice harbouring the SUB1A gene. Plant Growth Reg 72:97–103Zhao Y, Stiles AR, Saxena PK, Liu CZ (2013) Dark preincubation improves shoot organogenesis from Rhodiola crenulata leaf explants. Biol Plant 57:189–19
Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis)
OBJECTIVE:
To identify genetic causes of COACH syndrome
BACKGROUND:
COACH syndrome is a rare autosomal recessive disorder characterised by Cerebellar vermis hypoplasia, Oligophrenia (developmental delay/mental retardation), Ataxia, Coloboma, and Hepatic fibrosis. The vermis hypoplasia falls in a spectrum of mid-hindbrain malformation called the molar tooth sign (MTS), making COACH a Joubert syndrome related disorder (JSRD).
METHODS:
In a cohort of 251 families with JSRD, 26 subjects in 23 families met criteria for COACH syndrome, defined as JSRD plus clinically apparent liver disease. Diagnostic criteria for JSRD were clinical findings (intellectual impairment, hypotonia, ataxia) plus supportive brain imaging findings (MTS or cerebellar vermis hypoplasia). MKS3/TMEM67 was sequenced in all subjects for whom DNA was available. In COACH subjects without MKS3 mutations, CC2D2A, RPGRIP1L and CEP290 were also sequenced.
RESUlTS:
19/23 families (83%) with COACH syndrome carried MKS3 mutations, compared to 2/209 (1%) with JSRD but no liver disease. Two other families with COACH carried CC2D2A mutations, one family carried RPGRIP1L mutations, and one lacked mutations in MKS3, CC2D2A, RPGRIP1L and CEP290. Liver biopsies from three subjects, each with mutations in one of the three genes, revealed changes within the congenital hepatic fibrosis/ductal plate malformation spectrum. In JSRD with and without liver disease, MKS3 mutations account for 21/232 families (9%).
CONCLUSIONS:
Mutations in MKS3 are responsible for the majority of COACH syndrome, with minor contributions from CC2D2A and RPGRIP1L; therefore, MKS3 should be the first gene tested in patients with JSRD plus liver disease and/or coloboma, followed by CC2D2A and RPGRIP1L
- …