8 research outputs found

    Biologically active peptides of meat and meat product proteins: a review. Part 2. Functionality of meat bioactive peptides

    Get PDF
    Biologically active peptides (BAP) are regarded as the main products of protein hydrolysis. BAP activity depends on the amino acid sequence molecular weight and chain length, type and charge of an amino acid at the N-terminus and C-terminus, hydrophobic and hydrophilic properties, spatial structure. They positively influence many systems of the human body, including the blood circulatory, nervous, immune, gastrointestinal and other systems. The health-improving effect of bioactive peptides is formed due to their antioxidant, antihypertensive, antithrombotic, immunomodulatory, antimicrobial, anti-allergic, opioid, anti-inflammatory, hypocholesterolemic and anticancer properties. Angiotensin-I-converting enzyme (ACE) inhibitory peptides are most studied due to their effect on blood pressure regulation. Unlike synthetic preparations, biologically active peptides do not have side effects and, therefore, can be used as their alternative. There is a growing commercial interest in peptides generated from meat proteins is in the context of health saving functional foods. The paper describes prospects, pros and cons of using bioactive peptides as functional food ingredients and biologically active food additives

    Bioactive peptides and antinutrients in chickpea: description and properties (a review)

    Get PDF
    Legumes are a rich source of many different biologically active substances, such as fiber, proteins, vitamins and minerals. Chickpea (Cicer arietinum L.) is the third most important leguminous plant in the world: it has high nutritional value and is a source of a wide range of bioactive compounds. Bioactive peptides of chickpea seeds have antioxidant, ACE-inhibiting, cholesterollowering, antihypertensive, antimicrobial, antithrombotic, immunomodulatory, and opioid activities as well as the ability to bind minerals. But despite the benefits and high nutritional value, chickpea seeds contain antinutrients that reduce their nutritional and biological advantages. These antinutritional factors include condensed tannins, raffinose, and phytic acid. Research has shown that cooking, pregermination or fermentation can effectively reduce the indigestible content of chickpea seeds. For this purpose, it is recommended to use certain physical, chemical or biological methods: heat treatment, soaking and/or germination, enzymatic hydrolysis, irradiation, etc.This review article presents the world’s results of research aimed at studying bioactive chickpea peptides derived from chickpea seeds and ways of their formation as well as methods for elimination of antinutritional factors

    Белковые препараты из отходов переработки рапса: обзор современного состояния и перспектив развития существующих технологий

    Get PDF
    The demand for protein products is increasing due to the demographic growth of the world’s population. As an alternative to traditional sources of protein, waste from plant raw material processing is becoming increasingly popular. An important place in the global economy is occupied by oilseeds, in particular rapeseed, which production volumes are increasing in the Russian Federation every year. Rapeseed (Brassicaceae napus) is of great interest due to its high oil content (39.80–46.00%) and rich fatty acid composition, while cake and meal formed in the process of oil production are characterized by a significant content of crude protein (35.00–45.00%) and crude fiber (8.20–17.50%); however, they are used mainly as a feed additive. Recent studies on the processing of rapeseed waste indicate the value of this raw material as a source of dietary protein, which has a balanced amino acid profile and a high degree of digestibility (up to 85%). To obtain protein, rapeseed processing is envisaged: cleaning, grinding, cold pressing at a temperature of ≤ 40 °C, fat extraction with a solvent. At the next stages, the protein is extracted with 0.1–0.5 M NaCl at pH 5.3–12.0 and a temperature of 5–30 °C for 1 hour. The extracted protein is precipitated at the isoelectric point (pH 4.0) with HCl, separated from the mixture and neutralized. The result is a protein isolate with a protein content of 90.0–98.7%. It is possible to increase the quality and yield of the protein product due to the additional stage of processing the defatted cake with cellulolytic enzyme preparations. In this case, additional studies are required to determine the substrate specificity of commercial cellulase enzyme preparations and the optimal hydrolysis conditions. The parameters of extraction and precipitation of the protein in the case of using the stage of enzymatic lysis should also be specified.Спрос на белковые продукты увеличивается за счет роста населения планеты. В качестве альтернативы традиционным источникам белка все большую популярность приобретают отходы переработки растительного сырья. Важное место в мировой экономике занимают масличные культуры, в частности рапс, объемы производства которого на территории Российской Федерации с каждым годом возрастают. Семена рапса (лат. Brassicaceae napus) представляют большой интерес за счет их высокой масличности (39,80–46,00%) и богатого жирнокислотного состава, а жмых и шрот, образующиеся в процессе получения масла, характеризуются значительным содержанием сырого протеина (35,00–45,00%) и сырой клетчатки (8,20–17,50%). Однако перечисленные продукты используются в основном в качестве кормовой добавки. Последние исследования, посвященные переработке отходов рапса, указывают на ценность данного сырья в качестве источника пищевого белка, который имеет сбалансированный аминокислотный профиль и высокую степень усвояемости — до 85%. Для получения белка предусматривают обработку рапсового семени: очистку, измельчение, холодное прессование при температуре ≤ 40 °C, экстракцию жира растворителем. На следующих этапах осуществляют экстракцию белка 0,1–0,5 М NaCl при pH 5,3–12,0 и температуре 5–30 °C в течение 1 ч. Экстрагированный белок осаждают в изоэлектрической точке при значении pH 4,0 с помощью HCl, отделяют от смеси и нейтрализуют. В результате получают белковый изолят с содержанием белка 90,0–98,7%. Увеличить качество и выход белкового продукта можно за счет дополнительной стадии обработки обезжиренного жмыха целлюлолитическими ферментными препаратами. В данном случае необходимо проведение дополнительных исследований, связанных с определением субстратной специфичности коммерческих ферментных препаратов целлюлаз и оптимальных условий гидролиза. Параметры экстракции и осаждения белка в случае использования стадии ферментолиза также должны быть уточнены

    ВЛИЯНИЕ СПОНТАННОЙ МИКРОФЛОРЫ ФЕРМЕНТИРОВАННЫХ МЯСНЫХ ПРОДУКТОВ ИЗ КОНИНЫ НА ОБРАЗОВАНИЕ БИОЛОГИЧЕСКИ АКТИВНЫХ ПЕПТИДОВ

    Get PDF
    At present, different methods are used to accumulate functional peptides in meat raw materials, including the use of spontaneous microflora during autolysis, the use of the microbial enzymes (the application of starter cultures) and the use of the non-microbial enzymes (enzymes of animals and plant origin). Each method has its own specific characteristics of an impact on raw materials, which requires their detail study. This paper examines an effect of spontaneous microflora of fermented meat products from horsemeat on formation of biologically active peptides. Using the T-RFLP analysis, it was established that in air dried and uncooked smoked sausages produced with the use of the muscle tissue of horsemeat as a raw material, a significant proportion of microflora was presented by lactic acid microorganisms. The highest content of lactic acid microflora was observed in sample 1 (52.45 %), and the least in sample 3 (29.62 %). Sample 2 had the medium percent content of microflora compared to samples 1 and 3 — 38.82 %. It is necessary to note that about 25 % of microflora was unculturable; i.e., it had metabolic processes but did not grow on culture media. In the samples, the representatives of Actinobacteria and Pseudomonadales were found. Pathogenic and conditionally pathogenic microflora was not detected. Not only quantitative but also qualitative changes were observed in the studied samples. For example, in samples 1 and 2, the fractions of amilo-1,6-glucosidase, fast-type muscle myosin-binding-protein C; glucose-6-phosphate isomerase; fast skeletal muscle troponin I, phosphoglycerate kinase, pyruvate kinase and skeletal muscle actin were found, which were absent or reduced in sample 3. Therefore, in the studied product, good preservation of the main spectra of muscle proteins was observed, and the identified fractions, apparently, can be sources of new functional peptides. Not only quantitative but also qualitative changes were observed in the studied samples. For example, in samples 1 and 2, the C-terminal fragments of the myosin heavy chain were found, which were absent in sample 3. Also, the significant content of myoglobin was revealed in samples 2 and 3, and the myosin light chain was found in sample 1. Therefore, in the studied product, good preservation of muscle proteins myosin and myoglobin, which can be a source of new functional peptides, was observed. Based on the results of tandem mass-spectrometry, the proteins and natural short peptides present in the analyzed extracts were identified by the obtained masses. They belonged mainly to different peptides of equine myoglobin. Also, we identified several fragments, among which fast skeletal muscle troponin T and muscle creatine kinase were found. The obtained materials can be regarded as an experimental basis for the directed impact of starter cultures with a possibility to predict the protein and peptide composition of a finished product including with the aim of obtaining biologically active peptides.В настоящее время для накопления в мясном сырье функциональных пептидов используют различные методы, в том числе включающие использование спонтанной микрофлоры в ходе автолиза, использование ферментов микробного происхождения (применение стартовых культур) и использование ферментов немикробного происхождения (ферменты животного и растительного происхождения).  Каждый из методов имеет свои специфические особенности воздействия на сырье, что требует их детального изучения. В данной статье рассматривается влияние спонтанной микрофлоры ферментированных мясных продуктов из конины на образование биологически активных пептидов. С использованием T-RFLP-анализа установлено, что в составе микрофлоры сыровяленой и сырокопченой колбас, произведенных с использованием мышечной ткани конины в виде мясного сырья, значительная часть микрофлоры представлена молочнокислыми микроорганизмами. Так, наибольшее содержание молочнокислой микрофлоры наблюдается в образце № 1 (52,45 %), а наименьшее — в образце № 3 (29,62 %). В образце № 2 наблюдается среднее процентное содержание микрофлоры по сравнению с образцами № 1 и № 3 — 38,82 %. Следует также отметить, что приблизительно 25 % микрофлоры относится к некультивируемой, т.е. имеющей метаболические процессы, но не дающей роста на питательных средах. В образцах обнаружены представители актиномицетов и псевдомонад. Патогенной и условно-патогенной микрофлоры не обнаружено. Сравнительное протеомное исследование методом электрофореза трех видов колбас из конины, выработанных с использованием стартовых культур по различным технологиям, показало количественные и качественные различия по нескольким белковым фракциям. Наибольшее отличие в количестве белковых полос наблюдается между образцами № 1/№ 2 и № 3. Белковый профиль конины в образце № 3 имел значительное количественное отличие от белковых профилей образцов № 1 и № 2. Так, количественное содержание белковых полос в образце № 3 в диапазоне молекулярных масс 45–250 кДа всего 4, в то время как в образцах № 1 и № 2 их вдвое больше. В исследуемых образцах наблюдаются не только количественные, но и качественные изменения. Так, в образце № 1 и № 2 обнаружены фракции амило-1,6-глюкозидазы, миозин связывающего белка С быстрого типа,  глюкозо-6-фосфат изомеразы, тропонина I быстрых скелетных мышц, фосфоглицераткиназы, пируваткиназы и скелетномышечного актина, отсутствующие или уменьшающиеся в образце №3. Таким образом, в исследуемой продукции наблюдалась  сохранность основного спектра мышечных белков, а идентифицированные фракции очевидно, могут быть источниками новых функциональных пептидов. По результатам тандемной масс-спектрометрии по полученным массам были идентифицированы природные короткие пептиды, которые присутствовали в анализируемых экстрактах. В основном все они относились к разным пептидам конского миоглобина.  Также было идентифицировано несколько фрагментов, среди которых обнаруживались тропонин-Т скелетномышечный быстрого типа и мышечная креатинкиназа. Полученные материалы можно рассматривать как экспериментальную основу для направленного воздействия стартовых культур с возможностью прогнозирования белкового и пептидного состава готового продукта, в т.ч. с целью получения биологически активных пептидов в них

    Biologically active peptides of meat and meat product proteins: a review. Part 1. General information about biologically active peptides of meat and meat products

    Get PDF
    Over many years, proteins and polypeptides have aroused scientific-practical interest due to multiple functions in the metabolic processes in the body upon vital activities. Biologically active substances of protein origin have wide application in different industries, including the food industry and medicine. At present, many studies are directed towards investigation of mechanisms of formation of such physiologically valuable food components as biologically active peptides and methods of their recovery from meat raw materials and meat products. A large part of literature data confirms that mechanisms of formation of such peptides are similar irrespective of methods of their generation. Their basis is enzymatic hydrolysis of muscle tissue proteins under the action of intracellular enzymes during autolysis, digestive enzymes of the human gastrointestinal tract or commercial enzyme preparations used in laboratories or in the industry. The method of culinary and/or technological processing also affects the process of biopeptide formation in meat products, namely, their recovery and availability

    AN INFLUENCE OF SPONTANEOUS MICROFLORA OF FERMENTED HORSEMEAT PRODUCTS ON THE FORMATION OF BIOLOGICALLY ACTIVE PEPTIDES

    No full text
    At present, different methods are used to accumulate functional peptides in meat raw materials, including the use of spontaneous microflora during autolysis, the use of the microbial enzymes (the application of starter cultures) and the use of the non-microbial enzymes (enzymes of animals and plant origin). Each method has its own specific characteristics of an impact on raw materials, which requires their detail study. This paper examines an effect of spontaneous microflora of fermented meat products from horsemeat on formation of biologically active peptides. Using the T-RFLP analysis, it was established that in air dried and uncooked smoked sausages produced with the use of the muscle tissue of horsemeat as a raw material, a significant proportion of microflora was presented by lactic acid microorganisms. The highest content of lactic acid microflora was observed in sample 1 (52.45 %), and the least in sample 3 (29.62 %). Sample 2 had the medium percent content of microflora compared to samples 1 and 3 — 38.82 %. It is necessary to note that about 25 % of microflora was unculturable; i.e., it had metabolic processes but did not grow on culture media. In the samples, the representatives of Actinobacteria and Pseudomonadales were found. Pathogenic and conditionally pathogenic microflora was not detected. Not only quantitative but also qualitative changes were observed in the studied samples. For example, in samples 1 and 2, the fractions of amilo-1,6-glucosidase, fast-type muscle myosin-binding-protein C; glucose-6-phosphate isomerase; fast skeletal muscle troponin I, phosphoglycerate kinase, pyruvate kinase and skeletal muscle actin were found, which were absent or reduced in sample 3. Therefore, in the studied product, good preservation of the main spectra of muscle proteins was observed, and the identified fractions, apparently, can be sources of new functional peptides. Not only quantitative but also qualitative changes were observed in the studied samples. For example, in samples 1 and 2, the C-terminal fragments of the myosin heavy chain were found, which were absent in sample 3. Also, the significant content of myoglobin was revealed in samples 2 and 3, and the myosin light chain was found in sample 1. Therefore, in the studied product, good preservation of muscle proteins myosin and myoglobin, which can be a source of new functional peptides, was observed. Based on the results of tandem mass-spectrometry, the proteins and natural short peptides present in the analyzed extracts were identified by the obtained masses. They belonged mainly to different peptides of equine myoglobin. Also, we identified several fragments, among which fast skeletal muscle troponin T and muscle creatine kinase were found. The obtained materials can be regarded as an experimental basis for the directed impact of starter cultures with a possibility to predict the protein and peptide composition of a finished product including with the aim of obtaining biologically active peptides

    Medicinal Plants of the Russian Pharmacopoeia; their history and applications

    No full text
    corecore