43,368 research outputs found

    Invariant information and complementarity in high-dimensional states

    Full text link
    Using a generalization of the invariant information introduced by Brukner and Zeilinger [Phys. Rev. Lett. \textbf{83}, 3354 (1999)] to high-dimensional systems, we introduce a complementarity relation between the local and nonlocal information for d×dd\times d systems under the isolated environment, where dd is prime or the power of prime. We also analyze the dynamics of the local information in the decoherence process.Comment: 4 pages, 2 figure

    Relation between two measures of entanglement in spin-1/2 and spinless fermion quantum chain systems

    Full text link
    The concepts of concurrence and mode concurrence are the measures of entanglement for spin-1/2 and spinless fermion systems respectively. Based on the Jordan-Wigner transformation, any spin-1/2 system is always associated with a fermion system (called counterpart system). The comparison of concurrence and mode concurrence can be made with the aid of the Marshall's sign rule for the ground states of spin-1/2 XXZXXZ and spinless fermion chain systems. We observe that there exists an inequality between concurrence and mode concurrence for the ground states of the two corresponding systems. The spin-1/2 XY chain system and its spinless fermion counterpart as a realistic example is discussed to demonstrate the analytical results.Comment: 7 pages, no figures, publication version, to appear in PR

    Enhanced mechanical stability of Ni-YSZ scaffold demonstrated by nanoindentation and electrochemical impedance spectroscopy

    Get PDF
    The electrochemical performance of Ni-YSZ SOFC anodes can quickly degrade during redox cycling. Mechanical damage at interfaces significantly decreases the number of active triple phase boundaries. This study firstly focuses on the sintering temperature impact on YSZ scaffold mechanical properties. The YSZ scaffold sintered at 1200 °C exhibited 56% porosity, 28.3 GPa elastic modulus and 0.97 GPa hardness and was selected for further redox cycling study. The Ni infiltrated YSZ scaffold operated at 550 °C had an initial stabilized polarisation resistance equal to 0.62 Ω cm2 and only degraded to 2.85 Ω cm2 after 15 redox cycles. The active triple phase boundary density was evaluated by FIB-SEM tomography, and degraded from 28.54 μm−2 to 19.36 μm−2. The YSZ scaffold structure was robust after 15 redox cycles, as there was no observation of the framework fracturing in both SEM and FIB-SEM images, which indicated that the mechanical stability of YSZ scaffold improves the anode stability during redox cycling. Nonetheless, Ni agglomeration could not be prevented within Ni-YSZ scaffolds and this needs further consideration

    On the transport and thermodynamic properties of quasi-two-dimensional purple bronzes A0.9_{0.9}Mo6_6O17_{17} (A=Na, K)

    Full text link
    We report a comparative study of the specific heat, electrical resistivity and thermal conductivity of the quasi-two-dimensional purple bronzes Na0.9_{0.9}Mo6_6O17_{17} and K0.9_{0.9}Mo6_6O17_{17}, with special emphasis on the behavior near their respective charge-density-wave transition temperatures TPT_P. The contrasting behavior of both the transport and the thermodynamic properties near TPT_P is argued to arise predominantly from the different levels of intrinsic disorder in the two systems. A significant proportion of the enhancement of the thermal conductivity above TPT_P in Na0.9_{0.9}Mo6_6O17_{17}, and to a lesser extent in K0.9_{0.9}Mo6_6O17_{17}, is attributed to the emergence of phason excitations.Comment: 8 pages, 6 figures, To appear in Physical Review

    q-Deformation of W(2,2) Lie algebra associated with quantum groups

    Full text link
    An explicit realization of the W(2,2) Lie algebra is presented using the famous bosonic and fermionic oscillators in physics, which is then used to construct the q-deformation of this Lie algebra. Furthermore, the quantum group structures on the q-deformation of this Lie algebra are completely determined.Comment: 12 page

    Wetting and bonding characteristics of selected liquid-metals with a high power diode laser treated alumina bioceramic

    Get PDF
    Changes in the wettability characteristics of an alumina bioceramic occasioned by high power diode laser (HPDL) surface treatment were apparent from the observed reduction in the contact angle. Such changes were due to the HPDL bringing about reductions the surface roughness, increases in the surface O2 content and increases in the polar component of the surface energy. Additionally, HPDL treatment of the alumina bioceramic surface was found to effect an improvement in the bonding characteristics by increasing the work of adhesion. An electronic approach was used to elucidate the bonding characteristics of the alumina bioceramic before and after HPDL treatment. It is postulated that HPDL induced changes to the alumina bioceramic produced a surface with a reduced bandgap energy which consequently increased the work of adhesion by increasing the electron transfer at the metal/oxide interface and thus the metal-oxide interactions. Furthermore, it is suggested that the increase in the work of adhesion of the alumina bioceramic after HPDL treatment was due to a correlation existing between the wettability and ionicity of the alumina bioceramic; for it is believed that the HPDL treated surface is less ionic in nature than the untreated surface and therefore exhibits better wettability characteristics

    Very Long Baseline Array observations of the Intraday Variable source J1128+592

    Full text link
    Short time-scale flux density variations of flat spectrum radio sources are often explained by the scattering of radio waves in the turbulent, ionized Interstellar Matter of the Milky Way. One of the most convincing observational arguments in favor of this is the annual modulation of the variability time-scale caused by the Earth orbital motion around the Sun. J1128+592 is an IDV source with a possible annual modulation in its variability time-scale. We observed the source in 6 epochs with the VLBA at 5, 8 and 15 GHz in total intensity and polarization. The VLBA observations revealed an east-west oriented core-jet structure. Its position angle agrees with the angle of anisotropy derived from the annual modulation model. No significant long-term structural changes were observed with VLBI on mas-scales, however, compared to archival data, the VLBI core size is expanded. This expansion offers a possible explanation to the observed decrease of the strength of IDV. VLBI polarimetry revealed significant changes in the electric vector position angle and Rotation Measure of the core and jet. Part of the observed RM variability could be attributed to a scattering screen (37 pc distance), which covers the source (core and jet) and which may be responsible for the IDV. Superposition of polarized sub-components below the angular resolution limit may affect the observed RM as well.Comment: accepted for A&A (11 pages, 11 figures
    • …
    corecore