125 research outputs found
A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes
Copyright @ 2012, American Society for Microbiology.Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E
Instantaneous frequency and amplitude identification using wavelets: Application to glass structure
This paper describes a method for extracting rapidly varying, superimposed
amplitude- and frequency-modulated signal components. The method is based upon
the continuous wavelet transform (CWT) and uses a new wavelet which is a
modification to the well-known Morlet wavelet to allow analysis at high
resolution. In order to interpret the CWT of a signal correctly, an approximate
analytic expression for the CWT of an oscillatory signal is examined via a
stationary-phase approximation. This analysis is specialized for the new
wavelet and the results are used to construct expressions for the amplitude and
frequency modulations of the components in a signal from the transform of the
signal. The method is tested on a representative, variable-frequency signal as
an example before being applied to a function of interest in our subject area -
a structural correlation function of a disordered material - which immediately
reveals previously undetected features.Comment: 9 pages, 19 figures; v1.04 higher quality diagrams, removed
mathematica font requirement
Morphological, behavioral and cellular analyses revealed different phenotypes in Wolfram syndrome wfs1a and wfs1b zebrafish mutant lines
Wolfram syndrome (WS) is a rare genetic disease characterized by diabetes, optic atrophy and deafness. Patients die at 35 years of age, mainly from respiratory failure or dysphagia. Unfortunately, there is no treatment to block the progression of symptoms and there is an urgent need for adequate research models. Here, we report on the phenotypical characterization of two loss-of-function zebrafish mutant lines: wfs1aC825X and wfs1bW493X. We observed that wfs1a deficiency altered the size of the ear and the retina of the fish. We also documented a decrease in the expression level of unfolded protein response (UPR) genes in basal condition and in stress condition, i.e. after tunicamycin treatment. Interestingly, both mutants lead to a decrease in their visual function measured behaviorally. These deficits were associated with a decrease in the expression level of UPR genes in basal and stress conditions. Interestingly, basal, ATP-linked and maximal mitochondrial respirations were transiently decreased in the wfs1b mutant. Taken together, these zebrafish lines highlight the critical role of wfs1a and wfs1b in UPR, mitochondrial function and visual physiology. These models will be useful tools to better understand the cellular function of Wfs1 and to develop novel therapeutic approaches for WS
Differentiation of mouse bone marrow derived stem cells toward microglia-like cells
<p>Abstract</p> <p>Background</p> <p>Microglia, the macrophages of the brain, have been implicated in the causes of neurodegenerative diseases and display a loss of function during aging. Throughout life, microglia are replenished by limited proliferation of resident microglial cells. Replenishment by bone marrow-derived progenitor cells is still under debate. In this context, we investigated the differentiation of mouse microglia from bone marrow (BM) stem cells. Furthermore, we looked at the effects of FMS-like tyrosine kinase 3 ligand (Flt3L), astrocyte-conditioned medium (ACM) and GM-CSF on the differentiation to microglia-like cells.</p> <p>Methods</p> <p>We assessed <it>in vitro-</it>derived microglia differentiation by marker expression (CD11b/CD45, F4/80), but also for the first time for functional performance (phagocytosis, oxidative burst) and <it>in situ </it>migration into living brain tissue. Integration, survival and migration were assessed in organotypic brain slices.</p> <p>Results</p> <p>The cells differentiated from mouse BM show function, markers and morphology of primary microglia and migrate into living brain tissue. Flt3L displays a negative effect on differentiation while GM-CSF enhances differentiation.</p> <p>Conclusion</p> <p>We conclude that <it>in vitro-</it>derived microglia are the phenotypic and functional equivalents to primary microglia and could be used in cell therapy.</p
A Mutation in Myo15 Leads to Usher-Like Symptoms in LEW/Ztm-ci2 Rats
The LEW/Ztm-ci2 rat is an animal model for syndromal deafness that arose from a spontaneous mutation. Homozygous animals show locomotor abnormalities like lateralized circling behavior. Additionally, an impaired vision can be observed in some animals through behavioral studies. Syndromal deafness as well as retinal degeneration are features of the Usher syndrome in humans. In the present study, the mutation was identified as a base substitution (T->C) in exon 56 of Myo15, leading to an amino acid exchange from leucine (Leu) to proline (Pro) within the carboxy-terminal MyTH4 domain in the proteins' tail region. Myo15 mRNA was expressed in the retina as demonstrated for the first time with the help of in-situ hybridization and PCR. To characterize the visual phenotype, rats were examined by scotopic and photopic electroretinography and, additionally, histological analyses of the retinas were conducted. The complete loss of sight was detected along with a severe degeneration of photoreceptor cells. Interestingly, the manifestation of the disease does not solely depend on the mutation, but also on environmental factors. Since the LEW/Ztm-ci2 rat features the entire range of symptoms of the human Usher syndrome we think that this strain is an appropriate model for this disease. Our findings display that mutations in binding domains of myosin XV do not only cause non-syndromic hearing loss but can also lead to syndromic disorders including retinal dysfunction
Plasmacytoid Dendritic Cells Capture and Cross-Present Viral Antigens from Influenza-Virus Exposed Cells
Among the different subsets of dendritic cells (DC), plasmacytoid dendritic cells (PDC) play a unique role in secreting large amounts of type I interferons upon viral stimulation, but their efficiency as antigen-presenting cells has not been completely characterized. We show here, by flow cytometry, with human primary blood PDC and with a PDC cell line, that PDC display poor endocytic capacity for soluble or cellular antigens when compared to monocyte-derived myeloid DC. However, immature PDC efficiently take up cellular material from live influenza-exposed cells, subsequently mature and cross-present viral antigens very efficiently to specific CD8+ T cells. Therefore, during viral infection PDC not only secrete immunomodulatory cytokines, but also recognize infected cells and function as antigen cross-presenting cells to trigger the anti-viral immune response
Myosin VIIA, Important for Human Auditory Function, Is Necessary for Drosophila Auditory Organ Development
BACKGROUND: Myosin VIIA (MyoVIIA) is an unconventional myosin necessary for vertebrate audition [1]-[5]. Human auditory transduction occurs in sensory hair cells with a staircase-like arrangement of apical protrusions called stereocilia. In these hair cells, MyoVIIA maintains stereocilia organization [6]. Severe mutations in the Drosophila MyoVIIA orthologue, crinkled (ck), are semi-lethal [7] and lead to deafness by disrupting antennal auditory organ (Johnston's Organ, JO) organization [8]. ck/MyoVIIA mutations result in apical detachment of auditory transduction units (scolopidia) from the cuticle that transmits antennal vibrations as mechanical stimuli to JO. PRINCIPAL FINDINGS: Using flies expressing GFP-tagged NompA, a protein required for auditory organ organization in Drosophila, we examined the role of ck/MyoVIIA in JO development and maintenance through confocal microscopy and extracellular electrophysiology. Here we show that ck/MyoVIIA is necessary early in the developing antenna for initial apical attachment of the scolopidia to the articulating joint. ck/MyoVIIA is also necessary to maintain scolopidial attachment throughout adulthood. Moreover, in the adult JO, ck/MyoVIIA genetically interacts with the non-muscle myosin II (through its regulatory light chain protein and the myosin binding subunit of myosin II phosphatase). Such genetic interactions have not previously been observed in scolopidia. These factors are therefore candidates for modulating MyoVIIA activity in vertebrates. CONCLUSIONS: Our findings indicate that MyoVIIA plays evolutionarily conserved roles in auditory organ development and maintenance in invertebrates and vertebrates, enhancing our understanding of auditory organ development and function, as well as providing significant clues for future research
Activation of Human Monocytes by Live Borrelia burgdorferi Generates TLR2-Dependent and -Independent Responses Which Include Induction of IFN-Ξ²
It is widely believed that innate immune responses to Borrelia burgdorferi (Bb) are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs) elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-Ξ² and a number of interferon-stimulated genes (ISGs), which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-Ξ±, IL-6, IL-10 and IL-1Ξ² in monocytes than did lysates. Secreted IL-18, which, like IL-1Ξ², also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-Ξ² and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs
- β¦