8,440 research outputs found

    Quantum Mechanics as a Framework for Dealing with Uncertainty

    Full text link
    Quantum uncertainty is described here in two guises: indeterminacy with its concomitant indeterminism of measurement outcomes, and fuzziness, or unsharpness. Both features were long seen as obstructions of experimental possibilities that were available in the realm of classical physics. The birth of quantum information science was due to the realization that such obstructions can be turned into powerful resources. Here we review how the utilization of quantum fuzziness makes room for a notion of approximate joint measurement of noncommuting observables. We also show how from a classical perspective quantum uncertainty is due to a limitation of measurability reflected in a fuzzy event structure -- all quantum events are fundamentally unsharp.Comment: Plenary Lecture, Central European Workshop on Quantum Optics, Turku 2009

    Vortex entanglement in Bose-Einstein condensates coupled to Laguerre-Gauss beams

    Get PDF
    We study the establishment of vortex entanglement in remote and weakly interacting Bose Einstein condensates. We consider a two-mode photonic resource entangled in its orbital angular momentum (OAM) degree of freedom and, by exploiting the process of light-to-BEC OAM transfer, demonstrate that such entanglement can be efficiently passed to the matter-like systems. Our proposal thus represents a building block for novel low-dissipation and long-memory communication channels based on OAM. We discuss issues of practical realizability, stressing the feasibility of our scheme and present an operative technique for the indirect inference of the set vortex entanglement.Comment: 10 pages, 7 figures, RevTex

    Uncertainty reconciles complementarity with joint measurability

    Full text link
    The fundamental principles of complementarity and uncertainty are shown to be related to the possibility of joint unsharp measurements of pairs of noncommuting quantum observables. A new joint measurement scheme for complementary observables is proposed. The measured observables are represented as positive operator valued measures (POVMs), whose intrinsic fuzziness parameters are found to satisfy an intriguing pay-off relation reflecting the complementarity. At the same time, this relation represents an instance of a Heisenberg uncertainty relation for measurement imprecisions. A model-independent consideration show that this uncertainty relation is logically connected with the joint measurability of the POVMs in question.Comment: 4 pages, RevTeX. Title of previous version: "Complementarity and uncertainty - entangled in joint path-interference measurements". This new version focuses on the "measurement uncertainty relation" and its role, disentangling this issue from the special context of path interference duality. See also http://www.vjquantuminfo.org (October 2003

    Students who are deaf/hard of hearing with learning challenges: Strategies for classroom instruction

    Get PDF
    This paper discusses the prevalence of children who are deaf or hard of hearing with additional learning challenges and the need for further trainings for strategies to better serve this population

    Orthogonality catastrophe as a consequence of qubit embedding in an ultra-cold Fermi gas

    Get PDF
    We investigate the behaviour of a single qubit coupled to a low-dimensional, ultra-cold Fermi gas. The scattering between the system and the fermions leads to the loss of any coherence in the initial state of the qubit and we show that the exact dynamics of this process is strongly influenced by the effect of the orthogonality catastrophe within the gas. We highlight the relationship between the Loschmidt echo and the retarded Green's function - typically used to formulate the dynamical theory of the catastrophe - and demonstrate that the effect can be triggered and characterized via local operations on the qubit. We demonstrate how the expected broadening of the spectral function can be observed using Ramsey interferometry on the qubit.Comment: 4 and a bit pages, 3 figures. Updated versio

    Object-load and feature-load modulate EEG in a short-term memory task

    No full text
    Behavioral studies have indicated that multiple features of one object can be stored in working memory without additional costs. In contrast, visual search experiments revealed that search for a multi-featured object takes more time than for a single-featured object. We used EEG to differentiate the effect of object-load and feature-load in a short-term memory task. We independently varied the amount of objects and features that had to be memorized. Object-load modulated P3 amplitude during encoding and induced 10 Hz oscillations during the retention interval. Feature-load modulated the P3 during retrieval. Thus, only object-load seemed to influence encoding and retention while feature-load played a crucial role during retrieval. Our results demonstrate that object-load and feature-load influence short-term memory at different stages

    The few-body problem for trapped bosons with large scattering length

    Full text link
    We calculate energy levels of two and three bosons trapped in a harmonic oscillator potential with oscillator length aosca_{\mathrm osc}. The atoms are assumed to interact through a short-range potential with a scattering length aa, and the short-distance behavior of the three-body wave function is characterized by a parameter θ\theta. For large positive a/aosca/a_{\mathrm osc}, the energies of states which, in the absence of the trap, correspond to three free atoms approach values independent of aa and θ\theta. For other states the θ\theta dependence of the energy is strong, but the energy is independent of aa for a/aosc1|a/a_{\mathrm osc}|\gg1.Comment: 4 pages, 3 figure

    On the complementarity of the quadrature observables

    Full text link
    In this paper we investigate the coupling properties of pairs of quadrature observables, showing that, apart from the Weyl relation, they share the same coupling properties as the position-momentum pair. In particular, they are complementary. We determine the marginal observables of a covariant phase space observable with respect to an arbitrary rotated reference frame, and observe that these marginal observables are unsharp quadrature observables. The related distributions constitute the Radon tranform of a phase space distribution of the covariant phase space observable. Since the quadrature distributions are the Radon transform of the Wigner function of a state, we also exhibit the relation between the quadrature observables and the tomography observable, and show how to construct the phase space observable from the quadrature observables. Finally, we give a method to measure together with a single measurement scheme any complementary pair of quadrature observables.Comment: Dedicated to Peter Mittelstaedt in honour of his eightieth birthda

    Efficient construction of maximally localized photonic Wannier functions: locality criterion and initial conditions

    Full text link
    Wannier function expansions are well suited for the description of photonic- crystal-based defect structures, but constructing maximally localized Wannier functions by optimizing the phase degree of freedom of the Bloch modes is crucial for the efficiency of the approach. We systematically analyze different locality criteria for maximally localized Wannier functions in two- dimensional square and triangular lattice photonic crystals, employing (local) conjugate-gradient as well as (global) genetic-algorithm-based, stochastic methods. Besides the commonly used second moment (SM) locality measure, we introduce a new locality measure, namely the integrated modulus (IM) of the Wannier function. We show numerically that, in contrast to the SM criterion, the IM criterion leads to an optimization problem with a single extremum, thus allowing for fast and efficient construction of maximally localized Wannier functions using local optimization techniques. We also present an analytical formula for the initial choice of Bloch phases, which under certain conditions represents the global maximum of the IM criterion and, thus, further increases the optimization efficiency in the general case
    corecore