6 research outputs found
Off-diagonal Interactions, Hund's Rules and Pair-binding in Hubbard Molecules
We have studied the effect of including nearest-neighbor, electron-electron
interactions, in particular the off-diagonal (non density-density) terms, on
the spectra of truncated tetrahedral and icosahedral ``Hubbard molecules,''
focusing on the relevance of these systems to the physics of doped C.
Our perturbation theoretic and exact diagonalization results agree with
previous work in that the density-density term suppresses pair-binding.
However, we find that for the parameter values of interest for the
off-diagonal terms {\em enhance} pair-binding, though not enough to offset the
suppression due to the density-density term. We also find that the critical
interaction strengths for the Hund's rules violating level crossings in
C, C and C are quite insensitive to the
inclusion of these additional interactions.Comment: 20p + 5figs, Revtex 3.0, UIUC preprint P-94-10-08
Renormalization Group Approach to the Coulomb Pseudopotential for C_{60}
A numerical renormalization group technique recently developed by one of us
is used to analyse the Coulomb pseudopotential () in
for a variety of bare potentials. We find a large reduction in due to
intraball screening alone, leading to an interesting non-monotonic dependence
of on the bare interaction strength.
We find that is positive for physically reasonable bare parameters,
but small enough to make the electron-phonon coupling a viable mechanism for
superconductivity in alkali-doped fullerides. We end with some open problems.Comment: 12 pages, latex, 7 figures available from [email protected]
Superconductivity in Fullerides
Experimental studies of superconductivity properties of fullerides are
briefly reviewed. Theoretical calculations of the electron-phonon coupling, in
particular for the intramolecular phonons, are discussed extensively. The
calculations are compared with coupling constants deduced from a number of
different experimental techniques. It is discussed why the A_3 C_60 are not
Mott-Hubbard insulators, in spite of the large Coulomb interaction. Estimates
of the Coulomb pseudopotential , describing the effect of the Coulomb
repulsion on the superconductivity, as well as possible electronic mechanisms
for the superconductivity are reviewed. The calculation of various properties
within the Migdal-Eliashberg theory and attempts to go beyond this theory are
described.Comment: 33 pages, latex2e, revtex using rmp style, 15 figures, submitted to
Review of Modern Physics, more information at
http://radix2.mpi-stuttgart.mpg.de/fullerene/fullerene.htm
A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade
We provide a framework for analyzing the problem of interacting electrons in
a ballistic quantum dot with chaotic boundary conditions within an energy
(the Thouless energy) of the Fermi energy. Within this window we show that the
interactions can be characterized by Landau Fermi liquid parameters. When ,
the dimensionless conductance of the dot, is large, we find that the disordered
interacting problem can be solved in a saddle-point approximation which becomes
exact as (as in a large-N theory). The infinite theory shows a
transition to a strong-coupling phase characterized by the same order parameter
as in the Pomeranchuk transition in clean systems (a spontaneous
interaction-induced Fermi surface distortion), but smeared and pinned by
disorder. At finite , the two phases and critical point evolve into three
regimes in the plane -- weak- and strong-coupling regimes separated
by crossover lines from a quantum-critical regime controlled by the quantum
critical point. In the strong-coupling and quantum-critical regions, the
quasiparticle acquires a width of the same order as the level spacing
within a few 's of the Fermi energy due to coupling to collective
excitations. In the strong coupling regime if is odd, the dot will (if
isolated) cross over from the orthogonal to unitary ensemble for an
exponentially small external flux, or will (if strongly coupled to leads) break
time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we
are treating charge-channel instabilities in spinful systems, leaving
spin-channel instabilities for future work. No substantive results are
change