410 research outputs found

    Up-regulation of NMDA receptor subunit and post-synaptic density protein expression in the thalamus of elderly patients with schizophrenia

    Full text link
    Numerous studies have described structural and functional abnormalities of the thalamus in schizophrenia, but surprisingly few studies have examined neurochemical abnormalities that accompany these pathological changes. We previously identified abnormalities of multiple molecules associated with glutamatergic neurotransmission, including changes in NMDA receptor subunit transcripts and binding sites and NMDA receptor-associated post-synaptic density (PSD) protein transcripts in the thalamus of elderly patients with schizophrenia. In the present study, we performed western blot analysis to determine whether protein levels of NMDA receptor subunits (NR1, NR2A, NR2B) and associated PSD proteins (NF-L, PSD95, SAP102) are altered in schizophrenia. Thalamic tissue from each subject was grossly dissected into two regions: a dorsomedial region containing limbic-associated dorsomedial, anterior and central medial thalamic nuclei; and a ventral thalamus region that primarily consisted of the ventral lateral nucleus. We observed increased protein expression of the NR2B NMDA receptor subunit and its associated intracellular protein, PSD95, in the dorsomedial thalamus of patients with schizophrenia, but the other molecules were unchanged, and we found no changes in the ventral thalamus. These data provide additional evidence of thalamic neurochemical abnormalities, particularly in thalamic nuclei which project to limbic regions of the brain. Further, these findings provide additional evidence of NMDA receptor alterations in schizophrenia, which may play an important role in the neurobiology of the illness.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65970/1/j.1471-4159.2006.03954.x.pd

    Ability of online drug databases to assist in clinical decision-making with infectious disease therapies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infectious disease (ID) is a dynamic field with new guidelines being adopted at a rapid rate. Clinical decision support tools (CDSTs) have proven beneficial in selecting treatment options to improve outcomes. However, there is a dearth of information on the abilities of CDSTs, such as drug information databases. This study evaluated online drug information databases when answering infectious disease-specific queries.</p> <p>Methods</p> <p>Eight subscription drug information databases: American Hospital Formulary Service Drug Information (AHFS), Clinical Pharmacology (CP), Epocrates Online Premium (EOP), Facts & Comparisons 4.0 Online (FC), Lexi-Comp (LC), Lexi-Comp with AHFS (LC-AHFS), Micromedex (MM), and PEPID PDC (PPDC) and six freely accessible: DailyMed (DM), DIOne (DIO), Epocrates Online Free (EOF), Internet Drug Index (IDI), Johns Hopkins ABX Guide (JHAG), and Medscape Drug Reference (MDR) were evaluated for their scope (presence of an answer) and completeness (on a 3-point scale) in answering 147 infectious disease-specific questions. Questions were divided among five classifications: antibacterial, antiviral, antifungal, antiparasitic, and vaccination/immunization. Classifications were further divided into categories (e.g., dosage, administration, emerging resistance, synergy, and spectrum of activity). Databases were ranked based on scope and completeness scores. ANOVA and Chi-square were used to determine differences between individual databases and between subscription and free databases.</p> <p>Results</p> <p>Scope scores revealed three discrete tiers of database performance: Tier 1 (82-77%), Tier 2 (73-65%) and Tier 3 (56-41%) which were significantly different from each other (p < 0.05). The top tier performers: MM (82%), MDR (81%), LC-AHFS (81%), AHFS (78%), and CP (77%) answered significantly more questions compared to other databases (p < 0.05). Top databases for completeness were: MM (97%), DM (96%), IDI (95%), and MDR (95%). Subscription databases performed better than free databases in all categories (p = 0.03). Databases suffered from 37 erroneous answers for an overall error rate of 1.8%.</p> <p>Conclusion</p> <p>Drug information databases used in ID practice as CDSTs can be valuable resources. MM, MDR, LC-AHFS, AHFS, and CP were shown to be superior in their scope and completeness of information, and MM, AHFS, and MDR provided no erroneous answers. There is room for improvement in all evaluated databases.</p

    Direction and magnitude of nicotine effects on the fMRI BOLD response are related to nicotine effects on behavioral performance

    Get PDF
    Considerable variability across individuals has been reported in both the behavioral and fMRI blood oxygen level-dependent (BOLD) response to nicotine. We aimed to investigate (1) whether there is a heterogeneous effect of nicotine on behavioral and BOLD responses across participants and (2) if heterogeneous BOLD responses are associated with behavioral performance measures. In this double-blind, placebo-controlled, cross-over study, 41 healthy participants (19 smokers)—drawn from a larger population-based sample—performed a visual oddball task after acute challenge with 1 mg nasal nicotine. fMRI data and reaction time were recorded during performance of the task. Across the entire group of subjects, we found increased activation in the anterior cingulate cortex, middle frontal gyrus, superior temporal gyrus, post-central gyrus, planum temporal and frontal pole in the nicotine condition compared with the placebo condition. However, follow-up analyses of this difference in activation between the placebo and nicotine conditions revealed that some participants showed an increase in activation while others showed a decrease in BOLD activation from the placebo to the nicotine condition. A reduction of BOLD activation from placebo to nicotine was associated with a decrease in reaction time and reaction time variability and vice versa, suggesting that it is the direction of BOLD response to nicotine which is related to task performance. We conclude that the BOLD response to nicotine is heterogeneous and that the direction of response to nicotine should be taken into account in future pharmaco-fMRI research on the central action of nicotine

    NMDA Receptor Hypofunction Leads to Generalized and Persistent Aberrant γ Oscillations Independent of Hyperlocomotion and the State of Consciousness

    Get PDF
    International audienceNMDAr antagonists acutely produces, in the rodent CNS, generalized aberrant gamma oscillations, which are not dependent on hyperlocomotion-related brain state or conscious sensorimotor processing. These findings suggest that NMDAr hypofunction-related generalized gamma hypersynchronies represent an aberrant diffuse network noise, a potential electrophysiological correlate of a psychotic-like state. Such generalized noise might cause dysfunction of brain operations, including the impairments in cognition and sensorimotor integration seen in schizophrenia

    Phase I Hydroxylated Metabolites of the K2 Synthetic Cannabinoid JWH-018 Retain In Vitro and In Vivo Cannabinoid 1 Receptor Affinity and Activity

    Get PDF
    K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9)-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R).JWH-018, five potential monohydroxylated metabolites (M1-M5), and one carboxy metabolite (M6) were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3)H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35)S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i) values that were lower than or equivalent to Δ(9)-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9)-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9)-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251.Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ(9)-THC, may contribute to the greater prevalence of adverse effects observed with JWH-018-containing products relative to cannabis
    • …
    corecore