420 research outputs found

    Field-induced spin density wave in (TMTSF)2_2NO3_3

    Full text link
    Interlayer magnetoresistance of the Bechgaard salt (TMTSF)2_2NO3_3 is investigated up to 50 teslas under pressures of a few kilobars. This compound, the Fermi surface of which is quasi two-dimensional at low temperature, is a semi metal under pressure. Nevertheless, a field-induced spin density wave is evidenced at 8.5 kbar above \sim 20 T. This state is characterized by a drastically different spectrum of the quantum oscillations compared to the low pressure spin density wave state.Comment: to be published in Phys. Rev. B 71 (2005

    THE ROLE OF RESPIRATORY DISEASE IN CAUSES OF MORTALITY IN THE IRKUTSK REGION

    Get PDF
    We present the results of assessment of mortality key elements and trends concerning respiratory diseases in the Irkutsk region in comparison with Siberian District and whole Russian Federation during 1992-2009 years. It was found that the bronchial-pulmonary pathology is ranked first in the pattern of mortality from cancer and. infectious diseases. Also it was established that in recent years morbidity and mortality from pneumonia of the population of the Irkutsk region increased

    Orientational order parameters of a de Vries–type ferroelectric liquid crystal obtained by polarized Raman spectroscopy and x-ray diffraction

    Get PDF
    The orientational order parameters 〈P2〉 and 〈P4〉 of the ferroelectric, de Vries–type liquid crystal 9HL have been determined in the SmA* and SmC* phases by means of polarized Raman spectroscopy, and in the SmA* phase using x-ray diffraction. Quantum density functional theory predicts Raman spectra for 9HL that are in good agreement with the observations and indicates that the strong Raman band probed in the experiment corresponds to the uniaxial, coupled vibration of the three phenyl rings along the molecular long axis. The magnitudes of the orientational order parameters obtained in the Raman and x-ray experiments differ dramatically from each other, a discrepancy that is resolved by considering that the two techniques probe the orientational distributions of different molecular axes. We have developed a systematic procedure in which we calculate the angle between these axes and rescale the orientational order parameters obtained from x-ray scattering with results that are then in good agreement with the Raman data. At least in the case of 9HL, the results obtained by both techniques support a “sugar loaf” orientational distribution in the SmA* phase with no qualitative difference to conventional smectics A. The role of individual molecular fragments in promoting de Vries–type behavior is considered

    Collective modes in a system with two spin-density waves: the `Ribault' phase of quasi-one-dimensional organic conductors

    Full text link
    We study the long-wavelength collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family, focusing on phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly). We have recently proposed that two SDW's coexist in the Ribault phase, as a result of Umklapp processes. When the latter are strong enough, the two SDW's become circularly polarized (helicoidal SDW's). In this paper, we study the collective modes which result from the presence of two SDW's. We find two Goldstone modes, an out-of-phase sliding mode and an in-phase spin-wave mode, and two gapped modes. The sliding Goldstone mode carries only a fraction of the total optical spectral weight, which is determined by the ratio of the amplitude of the two SDW's. In the helicoidal phase, all the spectral weight is pushed up above the SDW gap. We also point out similarities with phase modes in two-band or bilayer superconductors. We expect our conclusions to hold for generic two-SDW systems.Comment: Revised version, 25 pages, RevTex, 7 figure

    A study on correlation effects in two dimensional topological insulators

    Full text link
    We investigate correlation effects in two dimensional topological insulators (TI). In the first part, we discuss finite size effects for interacting systems of different sizes in a ribbon geometry. For large systems, there are two pairs of well separated massless modes on both edges. For these systems, we analyze the finite size effects using a standard bosonization approach. For small systems, where the edge states are massive Dirac fermions, we use the inhomogeneous dynamical mean field theory (DMFT) combined with iterative perturbation theory as an impurity solver to study interaction effects. We show that the finite size gap in the edge states is renormalized for weak interactions, which is consistent with a Fermi-liquid picture for small size TIs. In the second part, we investigate phase transitions in finite size TIs at zero temperature focusing on the effects of possible inter-edge Umklapp scattering for the edge states within the inhomogeneous DMFT using the numerical renormalization group. We show that correlation effects are effectively stronger near the edge sites because the coordination number is smaller than in the bulk. Therefore, the localization of the edge states around the edge sites, which is a fundamental property in TIs, is weakened for strong coupling strengths. However, we find no signs for "edge Mott insulating states" and the system stays in the topological insulating state, which is adiabatically connected to the non-interacting state, for all interaction strengths smaller than the critical value. Increasing the interaction further, a nearly homogeneous Mott insulating state is stabilized.Comment: 20 page

    Sign reversals of the quantum Hall effect and helicoidal magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors

    Full text link
    We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave phases, which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard salts family. Within the framework of the quantized nesting model, we show that umklapp processes may naturally explain sign reversals of the quantum Hall effect (QHE) observed in these conductors. Moreover, umklapp scattering can change the polarization of the spin-density wave (SDW) from linear (sinusoidal SDW) to circular (helicoidal SDW). The QHE vanishes in the helicoidal phases, but a magnetoelectric effect appears. These two characteristic properties may be utilized to detect the magnetic-field-induced helicoidal SDW phases experimentally.Comment: 4 pages, latex, 3 figure

    Effect of umklapp scattering on the magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors

    Full text link
    We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave (FISDW) phases which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard salts family. Within the framework of the quantized nesting model, we show that the transition temperature is determined by a modified Stoner criterion which includes the effect of umklapp scattering. We determine the SDW polarization (linear or circular) by analyzing the Ginzburg-Landau expansion of the free energy. We also study how umklapp processes modify the quantum Hall effect (QHE) and the spectrum of the FISDW phases. We find that umklapp scattering stabilizes phases which exhibit a sign reversal of the QHE, as experimentally observed in the Bechgaard salts. These ``negative'' phases are characterized by the simultaneous existence of two SDWs with comparable amplitudes. As the umklapp scattering strength increases, they may become helicoidal (circularly polarized SDWs). The QHE vanishes in the helicoidal phases, but a magnetoelectric effect appears. These two characteristic properties may be utilized to detect the magnetic-field-induced helicoidal SDW phases experimentally.Comment: Revtex, 27 pages, 9 figure

    Theory of Thermodynamic Magnetic Oscillations in Quasi-One-Dimensional Conductors

    Full text link
    The second order correction to free energy due to the interaction between electrons is calculated for a quasi-one-dimensional conductor exposed to a magnetic field perpendicular to the chains. It is found that specific heat, magnetization and torque oscillate when the magnetic field is rotated in the plane perpendicular to the chains or when the magnitude of magnetic filed is changed. This new mechanism of thermodynamic magnetic oscillations in metals, which is not related to the presence of any closed electron orbits, is applied to explain behavior of the organic conductor (TMTSF)2_2ClO4_4.Comment: 11 pages + 5 figures (included

    Metals in high magnetic field: a new universality class of Fermi liquids

    Full text link
    Parquet equations, describing the competition between superconducting and density-wave instabilities, are solved for a three-dimensional isotropic metal in a high magnetic field when only the lowest Landau level is filled. In the case of a repulsive interaction between electrons, a phase transition to the density-wave state is found at finite temperature. In the opposite case of attractive interaction, no phase transition is found. With decreasing temperature TT, the effective vertex of interaction between electrons renormalizes toward a one-dimensional limit in a self-similar way with the characteristic length (transverse to the magnetic field) decreasing as ln1/6(ωc/T)\ln^{-1/6}(\omega_c/T) (ωc\omega_c is a cutoff). Correlation functions have new forms, previously unknown for conventional one-dimensional or three-dimensional Fermi-liquids.Comment: 13 pages + 4 figures (included
    corecore