340 research outputs found

    Statistical acceleration of interstellar pick‐up ions in co‐rotating interaction regions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94615/1/grl9663.pd

    A possible generation mechanism for the IBEX ribbon from outside the heliosphere

    Full text link
    The brightest and most surprising feature in the first all-sky maps of Energetic Neutral Atoms (ENA) emissions (0.2-6 keV) produced by the Interstellar Boundary Explorer (IBEX) is an almost circular ribbon of a ~140{\deg} opening angle, centered at (l,b) = (33{\deg}, 55{\deg}), covering the part of the celestial sphere with the lowest column densities of the Local Interstellar Cloud (LIC). We propose a novel interpretation of the IBEX results based on the idea of ENA produced by charge-exchange between the neutral H atoms at the nearby edge of the LIC and the hot protons of the Local Bubble (LB). These ENAs can reach the Sun's vicinity because of very low column density of the intervening LIC material. We show that a plane-parallel or slightly curved interface layer of contact between the LIC H atoms (n_H = 0.2 cm^-3, T = 6000-7000 K) and the LB protons (n_p = 0.005 cm^-3, T ~ 10^6 K), together with indirect contribution coming from multiply-scattered ENAs from the LB, may be able to explain both the shape of the ribbon and the observed intensities provided that the edge is < (500-2000) AU away, the LIC proton density is (correspondingly) < (0.04-0.01) cm^-3, and the LB contains ~1% of non-thermal protons over the IBEX energy range. If this model is correct, then IBEX, for the first time, has imaged in ENAs a celestial object from beyond the confines of the heliosphere and can directly diagnose the plasma conditions in the LB.Comment: Accepted by Ap.J.Lett

    The radial evolution of solar wind speeds

    Get PDF
    The WSA-ENLIL model predicts significant evolution of the solar wind speed. Along a flux tube the solar wind speed at 1.0 AU and beyond is found to be significantly altered from the solar wind speed in the outer corona at 0.1 AU, with most of the change occurring within a few tenths of an AU from the Sun. The evolution of the solar wind speed is most pronounced during solar minimum for solar wind with observed speeds at 1.0 AU between 400 and 500 km/s, while the fastest and slowest solar wind experiences little acceleration or deceleration. Solar wind ionic charge state observations made near 1.0 AU during solar minimum are found to be consistent with a large fraction of the intermediate-speed solar wind having been accelerated or decelerated from slower or faster speeds. This paper sets the groundwork for understanding the evolution of wind speed with distance, which is critical for interpreting the solar wind composition observations near Earth and throughout the inner heliosphere. We show from composition observations that the intermediate-speed solar wind (400-500 km/s) represents a mix of what was originally fast and slow solar wind, which implies a more bimodal solar wind in the corona than observed at 1.0 AU

    Role of coronal mass ejections in the heliospheric Hale cycle

    Get PDF
    [1] The 11-year solar cycle variation in the heliospheric magnetic field strength can be explained by the temporary buildup of closed flux released by coronal mass ejections (CMEs). If this explanation is correct, and the total open magnetic flux is conserved, then the interplanetary-CME closed flux must eventually open via reconnection with open flux close to the Sun. In this case each CME will move the reconnected open flux by at least the CME footpoint separation distance. Since the polarity of CME footpoints tends to follow a pattern similar to the Hale cycle of sunspot polarity, repeated CME eruption and subsequent reconnection will naturally result in latitudinal transport of open solar flux. We demonstrate how this process can reverse the coronal and heliospheric fields, and we calculate that the amount of flux involved is sufficient to accomplish the reversal within the 11 years of the solar cycle

    Distance to the IBEX Ribbon Source Inferred from Parallax

    Full text link
    Maps of Energetic Neutral Atom (ENA) fluxes obtained from Interstellar Boundary Explorer (IBEX) observations revealed a bright structure extending over the sky, subsequently dubbed the IBEX ribbon. The ribbon had not been expected from the existing models and theories prior to IBEX, and a number of mechanisms have since been proposed to explain the observations. In these mechanisms, the observed ENAs emerge from source plasmas located at different distances from the Sun. Since each part of the sky is observed by IBEX twice during the year from opposite sides of the Sun, the apparent position of the ribbon as observed in the sky is shifted due to parallax. To determine the ribbon parallax, we found the precise location of the maximum signal of the ribbon observed in each orbital arc. The obtained apparent positions were subsequently corrected for the Compton-Getting effect, gravitational deflection, and radiation pressure. Finally, we selected a part of the ribbon where its position is similar between the IBEX energy passbands. We compared the apparent positions obtained from the viewing locations on the opposite sides of the Sun, and found that they are shifted by a parallax angle of 0.41±0.150.41^\circ\pm0.15^\circ, which corresponds to a distance of 14038+84140^{+84}_{-38} AU. This finding supports models of the ribbon with the source located just outside the heliopause.Comment: 26 pages, 10 figures, 1 table, submitted to Ap

    Determining the ionization rates of interstellar neutral species using direct-sampling observations of their direct and indirect beams

    Full text link
    A good understanding of the ionization rates of neutral species in the heliosphere is important for studies of the heliosphere and planetary atmospheres. So far, the intensities of the ionization reactions have been studied based on observations of the contributing phenomena, such as the solar spectral flux in the EUV band and the flux of the solar wind protons, alpha particles, and electrons. The results strongly depend on absolute calibration of these measurements, which, especially for the EUV measurements, is challenging. Here, we propose a novel method of determining the ionization rate of neutral species based on direct sampling of interstellar neutral gas from two locations in space distant to each other. In particular, we suggest performing observations from the vicinity of Earth's orbit and using ratios of fluxes of ISN He for the direct and indirect orbits of interstellar atoms. We identify the most favorable conditions and observations geometries, suitable for implementation on the forthcoming NASA mission Interstellar Mapping and Acceleration Probe.Comment: Accepted for ApJ

    Weak pitch angle scattering of few MV rigidity ions from measurements of anisotropies in the distribution function of interstellar pickup H +

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95477/1/grl8632.pd
    corecore