32 research outputs found
Pruning Boosts Growth, Yield, and Fruit Quality of Old Valencia Orange Trees: A Field Study
Pruning is an essential practice that helps control branch growth, optimize fruit size, and enhance fruit tree productivity. This study focused on ‘Valencia’ orange trees, which had experienced a decline in productivity after being cultivated on reclaimed lands for several years. The aim was to explore the impact of pruning intensity on vegetation growth, fruit yield, productivity, and fruit quality in these orange trees. The study involved 35-year-old ‘Valencia’ orange trees, which were subjected to four different levels of pruning. The pruning treatments included: T1—no pruning (control group), T2—light pruning (removal of 25% of main branches), T3—moderate pruning (removal of 50% of main branches), and T4—heavy pruning (removal of 75% of main branches). Each season, these pruning measures were consistently carried out on 15 February. The results indicated that the severity of pruning directly influenced vegetative growth parameters, such as shoot length and leaf area. As the pruning intensity increased, so did the growth of the vegetation. However, the overall volume of the tree’s canopy decreased compared to the control group. These findings provide insights into the relationship between pruning practices and the growth and productivity of ‘Valencia’ orange trees. The highest fruit yields were observed when pruning was carried out at a severity level of 75%, followed by 50 and 25%. These pruning treatments had a positive impact on various aspects of fruit quality, including weight, size, firmness, juice content, TSS (°Brix), TSS/acid ratio, and vitamin C content. Additionally, pruning contributed to a greater fruit yield per tree and an overall increase in the yield percentage. In essence, the findings suggest that pruning performed at different severity levels in February effectively promotes vegetation growth and enhances the physical and chemical properties of ‘Valencia’ orange trees. Notably, it resulted in a nearly 20% rise in fruit yield compared to the control group
Improvement of Fruit Quality and Phytochemical Components of Pomegranate by Spraying with B<sub>2</sub>O<sub>3</sub> and ZnO Nanoparticles
Pomegranate is one of the most important and widely distributed trees. Boron and zinc are important nutrients for plant growth and fruit quality. Nanotechnology has emerged as one of the most innovative scientific fields in agriculture. This study was conducted to describe the changes in the physiochemical characteristics (weight, diameter, length, firmness and color), as well as the phytochemicals attributes (total phenolics, total flavonoids, ascorbic acid, anthocyanin and antioxidant %) and minerals contents, of pomegranates fruits of the ‘Wonderful’ cultivar as a result of spraying pomegranate trees using nanomaterials (zinc oxide (ZnONPs) and boron oxide (B2O3NPs)). In three successive developmental stages (full bloom, 6 weeks after full bloom and one month before harvest time), the trees were sprayed with 0.25, 0.5 and 1 g/L ZnONPs, as well as 0.25, 0.5 and 1 g/L B2O3NPs during the 2021 and 2022 seasons. The application of ZnONPs and B2O3NPs influenced the qualitative characteristics of the fruits in the studied seasons. The highest marketable % was observed for the 0.50 and 1 g/L ZnONPs and 1 g/L B2O3NPs compared to the other treatments. Also, a positive effect was recorded for the ZnONPs and B2O3NPs on the fruits’ physical properties. All of the ZnONP and B2O3NP treatments resulted in increasing the total phenolic, flavonoid, anthocyanin and ascorbic acid contents and the antioxidant activity in the pomegranate juices. In conclusion, our results suggest that spraying pomegranate trees with ZnONPs and B2O3NPs improves the marketable fruit, enhances the fruit quality and increases the bioactive components and antioxidant activity
In Vitro Drought Tolerance of Some Grape Rootstocks
Climate change is increasing the frequency and severity of drought strain, which poses a first-rate task to grapevine production. This have a look at investigated the response of four grape rootstocks (Richter, Salt Creek, Freedom, and Dogridge) to water deficit prompted by way of polyethylene glycol (PEG). Two pressure induction techniques had been as compared: surprise remedy, related to direct exposure of cultures to growing PEG concentrations (0%, 2%, 4%, 6%, 8%, and 10%); and step-clever long-time period remedy, steadily increasing PEG concentrations (0%, 6%, 8%, and 10%) through the years. The essential findings were as follows: drought strain negatively impacted all rootstocks, leading to decreased morphological tendencies (shoot number, period, and root number), survival %, and biochemical parameters (chlorophyll a and b, carotenoids, stomata popularity, RWC content material). It additionally led to reduced nutrient accumulation (N, P, K, Mg, Ca) in leaves. However, all rootstocks exhibited increased Proline content and antioxidant enzyme hobby under all PEG concentrations. In phrases of rootstock-unique responses, Richter and Salt Creek showed the maximum sturdy performance, maintaining better shoot and root growth, nutrient content, and photosynthetic hobby compared to Freedom and Dogridge. On the alternative hand, Freedom and Dogridge exhibited extra sensitivity to drought stress, experiencing stronger discounts in boom, biochemical parameters, and nutrient accumulation. In conclusion Richter and Salt Creek rootstocks could be valuable equipment for reinforcing drought tolerance in grapevines. The two carried out PEG remedies provide valuable methods for screening and deciding on drought-tolerant grape rootstocks
Nano-enhanced growth and resilience strategies for Pomegranate cv. Wonderful: Unveiling the impact of zinc and boron nanoparticles on fruit quality and abiotic stress management
The pomegranate fruit is an extremely popular fruit that is grown in various regions around the world. Pomegranate cv. Wonderful confronts severe abiotic stress disorders, like fruit cracking and sunburn, which decrease fruit quality. Nanoparticles offer potential for improving nutrient usage efficiency and lowering undesirable environmental repercussions. During three consecutive stages of development, namely the peak flowering stage, six weeks after peak flowering, and one month prior to harvest, magnificent pomegranate trees were subjected to separate applications of zinc oxide nanoparticles (ZnONPs) and boron oxide nanoparticles (B2O3NPs) at concentrations of 0, 250, 500, and 1000 parts per million (ppm). These treatments were carried out in both the 2021 and 2022 growing seasons. Positive effects were observed at concentrations of 500 and 1000 ppm for ZnONPs and a concentration of 1000 ppm for B2O3NPs on the vegetative growth parameters such as shoot length, leaf area, leaves number per shoot, and canopy volume, besides, leaf chemical characteristics such as leaf chlorophyll concentration and leaf nutrient content such as of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), zinc (Zn), and boron (B). Spraying with 500 and 1000 ppm B2O3NPs reduces the percentage of fruit sunburn, cracking and increased fruiting percentage such as initial fruit set (%), fruit retention (%), total yield of fruits (kg/tree), and increasing yield (%), while fruit drop % was decreased in comparison to other treatments. In both seasons, T4 (22.37, 22.0 %) and T7 (18.74, 19.490 %) showed an increase in initial fruit set (%). Similarly, there was an increase in fruit retention (%) with T4 (33.08, 34.550 %) and T7 (29.13, 29.430 %) compared to the control. The highest yield increasing percentages were observed with T4 (98.88, 100.270 %) and T3 (66.65, 64.980 %) compared to the control. On the other hand, T4 (8.24, 8.04 %) had the lowest fruit cracking, followed by T7 (12.73, 9.9 %) in the 2021 and 2022 seasons. Similarly, the lowest percentage of sunburned fruit was observed with T4 (20.47, 20.4 %) and T4 (18.43, 16.77 %) in the two seasons compared to the control. In general, our findings indicate that the application of ZnONPs and B2O3NPs on fully bloomed wonderful pomegranate trees, six weeks after full bloom, and one month prior to harvest, resulted in enhanced growth and yield. Additionally, this treatment exhibited a reduction in abiotic stress-related issues, such as fruit cracking and sunburn
Effects of Fogging System and Nitric Oxide on Growth and Yield of ‘Naomi’ Mango Trees Exposed to Frost Stress
In years with unfavorable weather, winter frost during the blossoming season can play a significant role in reducing fruit yield and impacting the profitability of cultivation. The mango Naomi cultivar Mangifera indica L. has a low canopy that is severely affected by the effects of frost stress. As a result of the canopy being exposed to physiological problems, vegetative development is significantly inhibited. The current investigation aimed to study the influence of spraying nitric oxide and fogging spray systems on Naomi mango trees grafted on ‘Succary’ rootstock under frost stress conditions. The treatments were as follows: nitric oxide (NO) 50 and 100 μM, fogging spray system, and control. In comparison to the control, the use of nitric oxide and a fogging system significantly improved the leaf area, photosynthesis pigments of the leaf, the membrane stability index, yield, and physical and chemical characteristics of the Naomi mango cultivar. For instance, the application of 50 μM NO, 100 μM NO, and the fogging spray system resulted in an increase in yield by 41.32, 106.12, and 121.43% during the 2020 season, and by 39.37, 101.30, and 124.68% during the 2021 season compared to the control, respectively. The fogging spray system and highest level of NO decreased electrolyte leakage, proline content, total phenolic content, catalase (CAT), peroxidases (POX), and polyphenol oxidase (PPO) enzyme activities in leaves. Furthermore, the number of damaged leaves per shoot was significantly reduced after the application of fogging spray systems and nitric oxide in comparison to the control. Regarding vegetative growth, our results indicated that the fogging spray system and spraying nitric oxide at 100 μM enhanced the leaf surface area compared to the control and other treatments. A similar trend was noticed regarding yield and fruit quality, whereas the best values were obtained when the fogging spray system using nitric oxide was sprayed at a concentration of 100 μM. The application of fogging spray systems and nitric oxide can improve the production and fruit quality of Naomi mango trees by reducing the effects of adverse frost stress conditions
Down-regulation of MSH3 and MSH6 genes in female breast cancer patients receiving taxane-based therapy
Abstract Background The DNA in each cell in our body is constantly in danger of becoming damaged. Most DNA damage gets repaired straight away via many different proteins encoded by DNA—repair genes. MSH3 and MSH6 are pivotal DNA repair genes maintaining human genome integrity. Dysregulated expression of such genes has its implications resulting in developing of adverse reactions in cancer breast patients receiving taxanes. Cancer chemotherapy with some of taxane class of agents are associated with significant neurotoxicity, arthralgias and myalgias that may offset the therapeutic benefits of taxane use. Our aim is to identify gene expression pattern of MSH3 and MSH6 DNA mismatch repair genes in female breast cancer patients who develop adverse reactions to taxane-based therapy. One hundred and five patients with histologically proven breast cancer who received paclitaxel (PTX) as a single agent or combination therapy have been enrolled along with a group of 50 females with benign breast lesions serving as controls.Gene expression studies of mismatch repair genes (MMR) genes; MSH3 and MSH6; have been performed by real-time PCR. Patients were divided into groups according to the determined type/grade of PTX-based toxicity and fold changes of both genes were estimated. Results In the present work both MMR genes showed significantly lower expression in all the studied patients compared to benign cases as a control group. Toxicity findings were encountered in 75.2% of the studied patient cohort. The most common observed type of toxicity was peripheral neuropathy (PN), 58.1% of the studied patients. Both MSH3 and MSH6 genes were significantly down-regulated in the presence of high grade PN toxicity ≥ 2 (p = 0.034 and 0.01); diarrhea toxicity (p = 0.02 and 0.008); dyspnea (p = 0.01 and 0.016) respectively and bone pain (p = 0.024 for MSH6 only). Conclusion Dysregulated expression of MMR GENES [MSH3and MSH6] can be implicated in paclitaxel—induced toxicity experienced by some cancer breast patients
CYP2C8 rs11572080 and CYP3A4 rs2740574 risk genotypes in paclitaxel-treated premenopausal breast cancer patients
Abstract Breast cancer (BC) is the most prevalent malignancy in women globally. At time of diagnosis, premenopausal BC is considered more aggressive and harder to treat than postmenopausal cases. Cytochrome P450 (CYP) enzymes are responsible for phase I of estrogen metabolism and thus, they are prominently involved in the pathogenesis of BC. Moreover, CYP subfamily 2C and 3A play a pivotal role in the metabolism of taxane anticancer agents. To understand genetic risk factors that may have a role in pre-menopausal BC we studied the genotypic variants of CYP2C8, rs11572080 and CYP3A4, rs2740574 in female BC patients on taxane-based therapy and their association with menopausal status. Our study comprised 105 female patients with histologically proven BC on paclitaxel-therapy. They were stratified into pre-menopausal (n = 52, 49.5%) and post-menopausal (n = 53, 50.5%) groups. Genotyping was done using TaqMan assays and employed on Quantstudio 12 K flex real-time platform. Significant increased frequencies of rs11572080 heterozygous CT genotype and variant T allele were established in pre-menopausal group compared to post-menopausal group (p = 0.023, 0.01, respectively). Moreover, logistic regression analysis revealed a significant association between rs11572080 CT genotype and premenopausal BC. However, regarding rs2740574, no significant differences in genotypes and allele frequencies between both groups were detected. We reported a significant association between CYP2C8 genotypic variants and premenopausal BC risk in Egyptian females. Further studies on larger sample sizes are still needed to evaluate its importance in early prediction of BC in young women and its effect on treatment outcome