2,338 research outputs found
Noncommutative Dipole Field Theories And Unitarity
We extend the argument of Gomis and Mehen for violation of unitarity in field
theories with space-time noncommutativity to dipole field theories. In dipole
field theories with a timelike dipole vector, we present 1-loop amplitudes that
violate the optical theorem. A quantum mechanical system with nonlocal
potential of finite extent in time also shows violation of unitarity.Comment: typos corrected, more details added in Sec 5, version to appear in
JHE
Cosmological Evolution of a Brane Universe in a Type 0 String Background
We study the cosmological evolution of a D3-brane Universe in a type 0 string
background. We follow the brane-universe along the radial coordinate of the
background and we calculate the energy density which is induced on the brane
because of its motion in the bulk. We find that for some typical values of the
parameters and for a particular range of values of the scale factor of the
brane-universe, the effective energy density is dominated by a term
proportional to indicating a slow varying inflationary
phase. For larger values of the scale factor the effective energy density takes
a constant value and the brane-universe enters its usual inflationary period.Comment: 25 pages,1 figure,LaTex file,final version to appear in Phys. Rev.
Positive specific heat of the quantum corrected dilaton black hole
Path integral quantization of dilaton gravity in two dimensions is applied to
the CGHS model to the first nontrivial order in matter loops. Our approach is
background independent as geometry is integrated out exactly. The result is an
effective shift of the Killing norm: the apparent horizon becomes smaller. The
Hawking temperature which is constant to leading order receives a quantum
correction. As a consequence, the specific heat becomes positive and
proportional to the square of the black hole mass.Comment: 18 pages, JHEP style, 1 eps figure, v2: extended the discussion,
added new formulas for mass change, added three new references (in particular
[35]
Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures
This study investigates the strong photoluminescence (PL) and X-ray excited
optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes
(GNFs:N), which arise from the significantly enhanced density of states in the
region of {\pi} states and the gap between {\pi} and {\pi}* states. The
increase in the number of the sp2 clusters in the form of pyridine-like N-C,
graphite-N-like, and the C=O bonding and the resonant energy transfer from the
N and O atoms to the sp2 clusters were found to be responsible for the blue
shift and the enhancement of the main PL emission feature. The enhanced PL is
strongly related to the induced changes of the electronic structures and
bonding properties, which were revealed by the X-ray absorption near-edge
structure, X-ray emission spectroscopy, and resonance inelastic X-ray
scattering. The study demonstrates that PL emission can be tailored through
appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way
for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure
Active Tension Network model suggests an exotic mechanical state realized in epithelial tissues.
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal - "isogonal" - deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena
The Conformal Sector of F-theory GUTs
D3-brane probes of exceptional Yukawa points in F-theory GUTs are natural
hidden sectors for particle phenomenology. We find that coupling the probe to
the MSSM yields a new class of N = 1 conformal fixed points with computable
infrared R-charges. Quite surprisingly, we find that the MSSM only weakly mixes
with the strongly coupled sector in the sense that the MSSM fields pick up
small exactly computable anomalous dimensions. Additionally, we find that
although the states of the probe sector transform as complete GUT multiplets,
their coupling to Standard Model fields leads to a calculable threshold
correction to the running of the visible sector gauge couplings which improves
precision unification. We also briefly consider scenarios in which SUSY is
broken in the hidden sector. This leads to a gauge mediated spectrum for the
gauginos and first two superpartner generations, with additional contributions
to the third generation superpartners and Higgs sector.Comment: v2: 51 pages, 2 figures, remark added, typos correcte
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
Hydrodynamics of a 5D Einstein-dilaton black hole solution and the corresponding BPS state
We apply the potential reconstruction approach to generate a series of
asymptotically AdS (aAdS) black hole solutions, with a self-interacting bulk
scalar field. Based on the method, we reproduce the pure AdS solution as a
consistency check and we also generate a simple analytic 5D black hole
solution. We then study various aspects of this solution, such as temperature,
entropy density and conserved charges. Furthermore, we study the hydrodynamics
of this black hole solution in the framework of fluid/gravity duality, e.g. the
ratio of the shear viscosity to the entropy density. In a degenerate case of
the 5D black hole solution, we find that the c function decreases monotonically
from UV to IR as expected. Finally, we investigate the stability of the
degenerate solution by studying the bosonic functional energy of the gravity
and the Witten-Nester energy . We confirm that the degenerate solution
is a BPS domain wall solution. The corresponding superpotential and the
solution of the killing spinor equation are found explicitly.Comment: V2: 23 pages, no figure, minor changes, typos corrected, new
references and comments added, version accepted by JHE
Observation of Hadronic W Decays in t-tbar Events with the Collider Detector at Fermilab
We observe hadronic W decays in t-tbar -> W (-> l nu) + >= 4 jet events using
a 109 pb-1 data sample of p-pbar collisions at sqrt{s} = 1.8 TeV collected with
the Collider Detector at Fermilab (CDF). A peak in the dijet invariant mass
distribution is obtained that is consistent with W decay and inconsistent with
the background prediction by 3.3 standard deviations. From this peak we measure
the W mass to be 77.2 +- 4.6 (stat+syst) GeV/c^2. This result demonstrates the
presence of two W bosons in t-tbar candidates in the W (-> l nu) + >= 4 jet
channel.Comment: 20 pages, 4 figures, submitted to PR
- âŠ