369,899 research outputs found

    Dynamical nucleus-nucleus potential and incompressibility of nuclear matter

    Full text link
    The dynamical nucleus-nucleus potentials for some fusion reactions are investigated by using the improved quantum molecular dynamics (ImQMD) model with different sets of parameters in which the corresponding incompressibility coefficient of nuclear matter is different. Two new sets of parameters SKP* and IQ3 for the ImQMD model are proposed with the incompressibility coefficient of 195 and 225 MeV, respectively. The measured fusion excitation function for 16O+208Pb and the charge distribution of fragments for Ca+Ca and Au+Au in multi-fragmentation process can be reasonably well reproduced. Simultaneously, the influence of the nuclear matter incompressibility and the range of nucleon-nucleon interaction on the nucleus-nucleus dynamic potential is investigated.Comment: 7 figures, 3 tables, to appear in Phys. Rev.

    Diameter dependence of SiGe nanowire thermal conductivity

    Full text link
    We theoretically compute the thermal conductivity of SiGe alloy nanowires as a function of nanowire diameter, alloy concentration, and temperature, obtaining a satisfactory quantitative agreement with experimental results. Our results account for the weaker diameter dependence of the thermal conductivity recently observed in Si1−x_{1-x}Gex_x nanowires (x<0.1x<0.1), as compared to pure Si nanowires. We also present calculations in the full range of alloy concentrations, 0≤x≤10 \leq x \leq 1, which may serve as a basis for comparison with future experiments on high alloy concentration nanowires.Comment: 3 fig

    Azimuthal asymmetry in transverse energy flow in nuclear collisions at high energies

    Get PDF
    The azimuthal pattern of transverse energy flow in nuclear collisions at RHIC and LHC energies is considered. We show that the probability distribution of the event-by-event azimuthal disbalance in transverse energy flow is essentially sensitive to the presence of the semihard minijet component.Comment: 6 pages, 2 figure

    Strangeness Production in Chemically Non-Equilibrated Parton Plasma

    Get PDF
    Strangeness production was investigated during the equilibration of a gluon dominated parton plasma produced at RHIC and LHC energies. The time evolution of parton densities are followed by a set of rate equations in a 1-dimensional expanding system. The strangeness production will depend on the initial chemical equilibration level and in our case the parton densities will remain far from the full equilibrium. We investigate the influence of gluon fragmentation on final strangeness content.Comment: 12 pages (LaTeX) + 2 postscript figures (tarred, compressed, uuencoded) included. Review to appear in Proceedings of Strangeness'95, Tucson, Arizona, Jan. 4--6 1995. (American Institute of Physics
    • …
    corecore