910 research outputs found

    Detecting a gravitational-wave background with next-generation space interferometers

    Full text link
    Future missions of gravitational-wave astronomy will be operated by space-based interferometers, covering very wide range of frequency. Search for stochastic gravitational-wave backgrounds (GWBs) is one of the main targets for such missions, and we here discuss the prospects for direct measurement of isotropic and anisotropic components of (primordial) GWBs around the frequency 0.1-10 Hz. After extending the theoretical basis for correlation analysis, we evaluate the sensitivity and the signal-to-noise ratio for the proposed future space interferometer missions, like Big-Bang Observer (BBO), Deci-Hertz Interferometer Gravitational-wave Observer (DECIGO) and recently proposed Fabry-Perot type DECIGO. The astrophysical foregrounds which are expected at low frequency may be a big obstacle and significantly reduce the signal-to-noise ratio of GWBs. As a result, minimum detectable amplitude may reach h^2 \ogw = 10^{-15} \sim 10^{-16}, as long as foreground point sources are properly subtracted. Based on correlation analysis, we also discuss measurement of anisotropies of GWBs. As an example, the sensitivity level required for detecting the dipole moment of GWB induced by the proper motion of our local system is closely examined.Comment: 19 pages, 6 figures, references added, typos correcte

    Water Maser Emission from the Active Nucleus in M51

    Get PDF
    22 GHz water vapor `kilomaser' emission is reported from the central region of the Whirlpool galaxy M 51 (NGC 5194). The red-shifted spectral features (Vlsr ~ 560 km/s), flaring during most of the year 2000, originate from a spatially unresolved maser spot of size < 30 mas (< 1.5 pc), displaced by < 250 mas from the nucleus. The data provide the first direct evidence for the association of an H2O kilomaser with an active galactic nucleus (AGN). In early 2001, blue-shifted maser emission (Vlsr ~ 435 km/s) was also detected. Red- and blue-shifted features bracket the systemic velocity asymmetrically. Within the standard model of a rotating Keplerian torus, this may either suggest the presence of a highly eccentric circumnuclear cloud or red- and blue-shifted `high velocity' emission from a radially extended torus. Most consistent with the measured H2O position is, however, an association of the red-shifted H2O emission with the northern part of the bipolar radio jet. In this scenario, the (weaker) northern jet is receding while the blue-shifted H2O emission is associated with the approaching southern jet.Comment: 9 pages, 1 figur

    Detecting a stochastic background of gravitational waves in the presence of non-Gaussian noise: A performance of generalized cross-correlation statistic

    Get PDF
    We discuss a robust data analysis method to detect a stochastic background of gravitational waves in the presence of non-Gaussian noise. In contrast to the standard cross-correlation (SCC) statistic frequently used in the stochastic background searches, we consider a {\it generalized cross-correlation} (GCC) statistic, which is nearly optimal even in the presence of non-Gaussian noise. The detection efficiency of the GCC statistic is investigated analytically, particularly focusing on the statistical relation between the false-alarm and the false-dismissal probabilities, and the minimum detectable amplitude of gravitational-wave signals. We derive simple analytic formulae for these statistical quantities. The robustness of the GCC statistic is clarified based on these formulae, and one finds that the detection efficiency of the GCC statistic roughly corresponds to the one of the SCC statistic neglecting the contribution of non-Gaussian tails. This remarkable property is checked by performing the Monte Carlo simulations and successful agreement between analytic and simulation results was found.Comment: 15 pages, 8 figures, presentation and some figures modified, final version to be published in PR

    Abelian dominance and the dual Meissner effect in local unitary gauges in SU(2) gluodynamics

    Get PDF
    Performing highly precise Monte-Carlo simulations of SU(2) gluodynamics, we observe for the first time Abelian dominance in the confining part of the static potential in local unitary gauges such as the F12 gauge. We also study the flux-tube profile between the quark and antiquark in these local unitary gauges and find a clear signal of the dual Meissner effect. The Abelian electric field is found to be squeezed into a flux tube by the monopole supercurrent. This feature is the same as that observed in the non-local maximally Abelian gauge. These results suggest that the Abelian confinement scenario is gauge independent. Observing the important role of space-like monopoles in the Polyakov gauge also indicates that the monopoles defined on the lattice do not necessarily correspond to those proposed by 't Hooft in the context of Abelian projection.Comment: 4 pages, 7 figure

    Submillimeter CO emission from shock-heated gas in the L1157 outflow

    Get PDF
    We present the CO J=6-5, 4-3, and 3-2 spectra from the blueshifted gas of the outflow driven by the low-mass class 0 protostar in the L1157 dark cloud. Strong submillimeter CO emission lines with T_mb > 30 K have been detected at 63" (~0.13 pc) south from the protostar. It is remarkable that the blue wings in the submillimeter lines are stronger by a factor of 3-4 than that of the CO J=1-0 emission line. The CO line ratios suggest that the blueshifted lobe of this outflow consists of moderately dense gas of n(H_2) = (1-3)x10^4 cm^-3 heated to T_kin = 50-170 K.It is also suggested that the kinetic temperature of the outflowing gas increases from ~80 K near the protostar to ~170 K at the shocked region in the lobe center, toward which the largest velocity dispersion of the CO emission is observed. A remarkable correlation between the kinetic temperature and velocity dispersion of the CO emission along the lobe provides us with direct evidence that the molecular gas at the head of the jet-driven bow shock is indeed heated kinematically. The lower temperature of ~80 K measured at the other shocked region near the end of the lobe is explained if this shock is in a later evolutionary stage, in which the gas has been cooled mainly through radiation of the CO rotational lines.Comment: 10 pages, 4 PDF figures, APJL in pres

    SHG microscopic observations of polar state in Li-doped KTaO3 under electric field

    Full text link
    Incipient ferroelectric KTaO3 with off-center Li impurity of the critical concentration of 2.8 mol% was investigated in order to clarify the dipole glass state under electric field. Using optical second-harmonic generation (SHG) microscope, we observed a marked history dependence of SHG intensity through zero-field cooling (ZFC), zero-field heating (ZFH), field heating after ZFC (FH/ZFC) and FH after field cooling (FH/FC). These show different paths with respect to temperature: In the ZFC/ZFH process, weak SHG was observed at low temperature, while in the FH/ZFC process, relatively high SHG appears in a limited temperature range below TF depending on the field strength, and in the FC and FH/FC processes, the SHG exhibits ferroelectric-like temperature dependence: it appears at the freezing temperature of 50K, increases with decreasing temperature and has a tendency of saturation. These experimental results strongly suggest that dipole glass state or polar nano-clusters which gradually freezes with decreasing temperature is transformed into semi-macroscopic polar state under the electric field. However at sufficiently low temperature, the freezing is so strong that the electric field cannot enlarge the polar clusters. These experimental results show that the polar nano-cluster model similar to relaxors would be more relevant in KTaO3 doped with the critical concentration of Li. Further experiments on the anisotropy of SHG determine that the average symmetry of the field-induced polar phase is tetragonal 4mm or 4, which is also confirmed by the X-ray diffraction measurement.Comment: 26 pages, 8 figures, 1 tabl

    Detection of Polarized Broad Emission in the Seyfert 2 Galaxy Mrk 573

    Full text link
    We report the discovery of the scattered emission from a hidden broad-line region (BLR) in a Seyfert 2 galaxy, Mrk 573, based on our recent spectropolarimetric observation performed at the Subaru Telescope. This object has been regarded as a type 2 AGN without a hidden BLR by the previous observations. However, our high quality spectrum of the polarized flux of Mrk 573 shows prominent broad (~3000 km/s) H_alpha emission, broad weak H_beta emission, and subtle Fe II multiplet emission. Our new detection of these indications for the presence of the hidden BLR in the nucleus of Mrk 573 is thought to be owing to the high signal-to-noise ratio of our data, but the possibility of a time variation of the scattered BLR emission is also mentioned. Some diagnostic quantities such as the IRAS color, the radio power, and the line ratio of the emission from the narrow-line region of Mrk 573 are consistent with the distributions of such quantities of type 2 AGNs with a hidden BLR. Mrk 573 is thought to be an object whose level of the AGN activity is the weakest among the type 2 AGNs with a hidden BLR. In terms of the systematic differences between the type 2 AGNs with and without a hidden BLR, we briefly comment on an interesting Seyfert 2 galaxy, Mrk 266SW, which may possess a hidden BLR but has been treated as a type 2 AGNs without a hidden BLR.Comment: 9 pages including 6 figures, to appear in The Astronomical Journa

    Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy

    Get PDF
    Small ubiquitin-like modifier (SUMO) conjugation is a reversible post-translational modification process implicated in the regulation of gene transcription, DNA repair, and cell cycle. SUMOylation depends on the sequential activities of E1 activating, E2 conjugating, and E3 ligating enzymes. SUMO E3 ligases enhance transfer of SUMO from the charged E2 enzyme to the substrate. We have previously identified PIASy, a member of the Siz/protein inhibitor of activated STAT (PIAS) RING family of SUMO E3 ligases, as essential for mitotic chromosomal SUMOylation in frog egg extracts and demonstrated that it can mediate effective SUMOylation. To address how PIASy catalyzes SUMOylation, we examined various truncations of PIASy for their ability to mediate SUMOylation. Using NMR chemical shift mapping and mutagenesis, we identified a new SUMO-interacting motif (SIM) in PIASy. The new SIM and the currently known SIM are both located at the C terminus of PIASy, and both are required for the full ligase activity of PIASy. Our results provide novel insights into the mechanism of PIASy-mediated SUMOylation. PIASy adds to the growing list of SUMO E3 ligases containing multiple SIMs that play important roles in the E3 ligase activity

    Large-scale Filamentary Structure around the Protocluster at Redshift z=3.1

    Get PDF
    We report the discovery of a large-scale coherent filamentary structure of Lyman alpha emitters in a redshift space at z=3.1. We carried out spectroscopic observations to map the three dimensional structure of the belt-like feature of the Lyman alpha emitters discovered by our previous narrow-band imaging observations centered on the protocluster at z=3.1. The feature was found to consist of at least three physical filaments connecting with each other. The result is in qualitative agreement with the prediction of the 'biased' galaxy-formation theories that galaxies preferentially formed in large-scale filamentary or sheet-like mass overdensities in the early Universe. We also found that the two known giant Lyman alpha emission-line nebulae showing high star-formation activities are located near the intersection of these filaments, which presumably evolves into a massive cluster of galaxies in the local Universe. This may suggest that massive galaxy formation occurs at the characteristic place in the surrounding large-scale structure at high redshift.Comment: 11 pages, 3 figures, accepted for publication in ApJ Letter

    VLBI study of water maser emission in the Seyfert 2 galaxy NGC5793. I: Imaging blueshifted emission and the parsec-scale jet

    Get PDF
    We present the first result of VLBI observations of the blueshifted water maser emission from the type 2 Seyfert galaxy NGC5793, which we combine with new and previous VLBI observations of continuum emission at 1.7, 5.0, 8.4, 15, and 22 GHz. Maser emission was detected earlier in single-dish observations and found to have both red- and blueshifted features relative to the systemic velocity. We could image only the blueshifted emission, which is located 3.6 pc southwest of the 22 GHz continuum peak. The blueshifted emission was found to originate in two clusters that are separated by 0.7 milliarcsecond (0.16 pc). No compact continuum emission was found within 3.6 pc of the maser spot. A compact continuum source showing a marginally inverted spectrum between 1.7 and 5.0 GHz was found 4.2 pc southwest of the maser position. The spectral turnover might be due to synchrotron self-absorption caused by a shock in the jet owing to collision with dense gas, or it might be due to free-free absorption in an ionized screen possibly the inner part of a disk, foreground to the jet. The water maser may be part of a maser disk. If so, it would be rotating in the opposite sense to the highly inclined galactic disk observed in CO emission. We estimate a binding mass within 1 pc of the presumed nucleus to be on the order of 10^7 Msun. Alternatively, the maser emission could result from the amplification of a radio jet by foreground circumnuclear molecular gas. In this case, the high blueshift of the maser emission might mean that the masing region is moving outward away from the molecular gas surrounding an active nucleus.Comment: 20 pages, 6 figures, to appear in ApJ, Oct. 200
    • …
    corecore