166 research outputs found

    R-mode oscillations of rapidly rotating Newtonian stars - A new numerical scheme and its application to the spin evolution of neutron stars

    Full text link
    We have developed a new numerical scheme to solve r-mode oscillations of {\it rapidly rotating polytropic stars} in Newtonian gravity. In this scheme, Euler perturbations of the density, three components of the velocity are treated as four unknown quantities together with the oscillation frequency. For the basic equations of oscillations, the compatibility equations are used instead of the linearized equations of motion. By using this scheme, we have solved the classical r-mode oscillations of rotational equilibrium sequences of polytropes with the polytropic indices N=0.5,1.0N = 0.5, 1.0 and 1.5 for m=2,3m = 2, 3 and 4 modes. Here mm is the rank of the spherical harmonics YlmY_l^m. These results have been applied to investigate evolution of uniformly rotating hot young neutron stars by considering the effect of gravitational radiation and viscosity. We have found that the maximum angular velocities of neutron stars are around 10-20% of the Keplerian angular velocity irrespective of the softness of matter. This confirms the results obtained from the analysis of r-modes with the slow rotation approximation employed by many authors.Comment: LaTeX 12 pages with 19 figures, to be published in PR

    Conservation laws and evolution schemes in geodesic, hydrodynamic, and magnetohydrodynamic flows

    Get PDF
    Carter and Lichnerowicz have established that barotropic fluid flows are conformally geodesic and obey Hamilton's principle. This variational approach can accommodate neutral, or charged and poorly conducting, fluids. We show that, unlike what has been previously thought, this approach can also accommodate perfectly conducting magnetofluids, via the Bekenstein-Oron description of ideal magnetohydrodynamics. When Noether symmetries associated with Killing vectors or tensors are present in geodesic flows, they lead to constants of motion polynomial in the momenta. We generalize these concepts to hydrodynamic flows. Moreover, the Hamiltonian descriptions of ideal magnetohydrodynamics allow one to cast the evolution equations into a hyperbolic form useful for evolving rotating or binary compact objects with magnetic fields in numerical general relativity. Conserved circulation laws, such as those of Kelvin, Alfv\'en and Bekenstein-Oron, emerge simply as special cases of the Poincar\'e-Cartan integral invariant of Hamiltonian systems. We use this approach to obtain an extension of Kelvin's theorem to baroclinic (non-isentropic) fluids, based on a temperature-dependent time parameter. We further extend this result to perfectly or poorly conducting baroclinic magnetoflows. Finally, in the barotropic case, such magnetoflows are shown to also be geodesic, albeit in a Finsler (rather than Riemann) space.Comment: 23 page

    Truncated post-Newtonian neutron star model

    Get PDF
    As a preliminary step towards simulating binary neutron star coalescing problem, we test a post-Newtonian approach by constructing a single neutron star model. We expand the Tolman-Oppenheimer-Volkov equation of hydrostatic equilibrium by the power of c2c^{-2}, where cc is the speed of light, and truncate at the various order. We solve the system using the polytropic equation of state with index Γ=5/3,2\Gamma=5/3, 2 and 3, and show how this approximation converges together with mass-radius relations. Next, we solve the Hamiltonian constraint equation with these density profiles as trial functions, and examine the differences in the final metric. We conclude the second `post-Newtonian' approximation is close enough to describe general relativistic single star. The result of this report will be useful for further binary studies. (Note to readers) This paper was accepted for publication in Physical Review D. [access code dsj637]. However, since I was strongly suggested that the contents of this paper should be included as a section in our group's future paper, I gave up the publication.Comment: 5 pages, RevTeX, 3 eps figs, epsf.sty, accepted for publication in PRD (Brief Report), but will not appea

    Computing the Complete Gravitational Wavetrain from Relativistic Binary Inspiral

    Get PDF
    We present a new method for generating the nonlinear gravitational wavetrain from the late inspiral (pre-coalescence) phase of a binary neutron star system by means of a numerical evolution calculation in full general relativity. In a prototype calculation, we produce 214 wave cycles from corotating polytropes, representing the final part of the inspiral phase prior to reaching the ISCO. Our method is based on the inequality that the orbital decay timescale due to gravitational radiation is much longer than an orbital period and the approximation that gravitational radiation has little effect on the structure of the stars. We employ quasi-equilibrium sequences of binaries in circular orbit for the matter source in our field evolution code. We compute the gravity-wave energy flux, and, from this, the inspiral rate, at a discrete set of binary separations. From these data, we construct the gravitational waveform as a continuous wavetrain. Finally, we discuss the limitations of our current calculation, planned improvements, and potential applications of our method to other inspiral scenarios.Comment: 4 pages, 4 figure

    Electronic states and quantum transport in double-wall carbon nanotubes

    Full text link
    Electronic states and transport properties of double-wall carbon nanotubes without impurities are studied in a systematic manner. It is revealed that scattering in the bulk is negligible and the number of channels determines the average conductance. In the case of general incommensurate tubes, separation of degenerated energy levels due to intertube transfer is suppressed in the energy region higher than the Fermi energy but not in the energy region lower than that. Accordingly, in the former case, there are few effects of intertube transfer on the conductance, while in the latter case, separation of degenerated energy levels leads to large reduction of the conductance. It is also found that in some cases antiresonance with edge states in inner tubes causes an anomalous conductance quantization, G=e2/πG=e^2/\pi\hbar, near the Fermi energy.Comment: 24 pages, 13 figures, to be published in Physical Review

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    Optical response of finite-length carbon nanotubes

    Full text link
    Optical response of finite-length metallic carbon nanotubes is calculated including effects of induced edge charges in a self-consistent manner. The results show that the main resonance corresponding to excitation of the fundamental plasmon mode with wave vector π/l\pi/l with ll being the tube length is quite robust and unaffected. This arises because the strong electric field associated with edge charges is screened and decays rapidly inside the nanotube. For higher-frequency resonances, the field starts to be mixed and tends to shift resonances to higher frequencies.Comment: 10 pages, 9 figures, to be published in J. Phys. Soc. Jp

    Tigers Need Cover: Multi-Scale Occupancy Study of the Big Cat in Sumatran Forest and Plantation Landscapes

    Get PDF
    The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929) is generally known as a forest-dependent animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted systematic detection, non-detection sign surveys in 47, 17×17 km grid cells. Within each cell, we surveyed 40, 1-km transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones), riparian forests (as corridors) and smaller forest patches (as stepping stones), potentially maintaining a metapopulation structure in fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial information relevant to restoring tigers and other wildlife in forest and plantation landscapes through improvement in habitat extent, quality, and connectivity

    Effects of traumatic brain injury and posttraumatic stress disorder on Alzheimer's disease in veterans, using the Alzheimer's Disease Neuroimaging Initiative

    Get PDF
    Both traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are common problems resulting from military service, and both have been associated with increased risk of cognitive decline and dementia resulting from Alzheimer's disease (AD) or other causes. This study aims to use imaging techniques and biomarker analysis to determine whether traumatic brain injury (TBI) and/or PTSD resulting from combat or other traumas increase the risk for AD and decrease cognitive reserve in Veteran subjects, after accounting for age. Using military and Department of Veterans Affairs records, 65 Vietnam War veterans with a history of moderate or severe TBI with or without PTSD, 65 with ongoing PTSD without TBI, and 65 control subjects are being enrolled in this study at 19 sites. The study aims to select subject groups that are comparable in age, gender, ethnicity, and education. Subjects with mild cognitive impairment (MCI) or dementia are being excluded. However, a new study just beginning, and similar in size, will study subjects with TBI, subjects with PTSD, and control subjects with MCI. Baseline measurements of cognition, function, blood, and cerebrospinal fluid biomarkers; magnetic resonance images (structural, diffusion tensor, and resting state blood-level oxygen dependent (BOLD) functional magnetic resonance imaging); and amyloid positron emission tomographic (PET) images with florbetapir are being obtained. One-year follow-up measurements will be collected for most of the baseline procedures, with the exception of the lumbar puncture, the PET imaging, and apolipoprotein E genotyping. To date, 19 subjects with TBI only, 46 with PTSD only, and 15 with TBI and PTSD have been recruited and referred to 13 clinics to undergo the study protocol. It is expected that cohorts will be fully recruited by October 2014. This study is a first step toward the design and statistical powering of an AD prevention trial using at-risk veterans as subjects, and provides the basis for a larger, more comprehensive study of dementia risk factors in veterans
    corecore