63 research outputs found
Randomized comparison of amodiaquine plus sulfadoxine-pyrimethamine, artemether-lumefantrine, and dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Burkina Faso.
BACKGROUND: Combination antimalarial therapy is advocated to improve treatment efficacy and limit selection of drug-resistant parasites. We compared the efficacies of 3 combination regimens in Bobo-Dioulasso, Burkina Faso: amodiaquine plus sulfadoxine-pyrimethamine, which was recently shown to be highly efficacious at this site; artemether-lumefantrine, the new national first-line antimalarial regimen; and dihydroartemisinin-piperaquine (DP), a newer regimen. METHODS: We enrolled 559 patients >or=6 months of age with uncomplicated Plasmodium falciparum malaria and randomized them to the 3 regimens. We analyzed the risk of recurrent parasitemia by day 28 and day 42, both unadjusted and adjusted by PCR methods to distinguish recrudescence and new infection. RESULTS: Complete data were available for 517 (92.5%) of the enrolled subjects. Early treatment failures occurred in 5 patients treated with amodiaquine plus sulfadoxine-pyrimethamine and in 2 patients each treated with the other regimens. The day 28 risk of recurrent parasitemia, unadjusted by genotyping, was significantly higher for patients receiving artemether-lumefantrine than for patients receiving amodiaquine plus sulfadoxine-pyrimethamine (20.1% vs. 6.2%; risk difference, 13.8%; 95% confidence interval, 7.0%-20.7%) or dihydroartemisinin-piperaquine (20.1% vs. 2.2%; risk difference, 17.9%; 95% confidence interval, 11.6%-24.1%). Similar differences were seen for children <5 years of age (54% of the study population) and when outcomes were extended to 42 days. Significant differences were not seen between outcomes for patients receiving amodiaquine plus sulfadoxine-pyrimethamine and outcomes for those receiving dihydroartemisinin-piperaquine. Recrudescences were uncommon (occurring in <5% of patients) in all treatment groups. No serious adverse events were noted. CONCLUSIONS: All regimens were highly efficacious in clearing infection, but considering the risks of recurrent malaria after therapy, the amodiaquine plus sulfadoxine-pyrimethamine and dihydroartemisinin-piperaquine regimens were more efficacious than the artemether-lumefantrine regimen (the new national regimen in Burkina Faso) for the treatment of uncomplicated P. falciparum malaria
Effects of mefloquine and artesunate mefloquine on the emergence, clearance and sex ratio of Plasmodium falciparum gametocytes in malarious children
<p>Abstract</p> <p>Background</p> <p>The gametocyte sex ratio of <it>Plasmodium falciparum</it>, defined as the proportion of gametocytes that are male, may influence transmission but little is known of the effects of mefloquine or artesunate-mefloquine on gametocyte sex ratio and on the sex ratio of first appearing gametocytes.</p> <p>Methods</p> <p>350 children with uncomplicated <it>P. falciparum </it>malaria were enrolled in prospective treatment trial of mefloquine or artesunate-mefloquine between 2007 and 2008. Gametocytaemia was quantified, and gametocytes were sexed by morphological appearance, before and following treatment. The area under curve of gametocyte density <it>versus </it>time (AUC<sub>gm</sub>) was calculated by linear trapezoidal method.</p> <p>Results</p> <p>91% and 96% of all gametocytes appeared by day 7 and day 14, respectively following treatment. The overall rate of gametocytaemia with both treatments was 31%, and was significantly higher in mefloquine than in artesunate-mefloquine treated children if no gametocyte was present a day after treatment began (25.3% <it>v </it>12.8%, P = 0.01). Gametocyte clearance was significantly faster with artesunate-mefloquine (1.8 ± 0.22 [sem] <it>v </it>5.6 ± 0.95 d; P = 0.001). AUC<sub>gm </sub>was significantly lower in the artesunate mefloquine group (P = 0.008). The pre-treatment sex ratio was male-biased, but post-treatment sex ratio or the sex ratio of first appearing gametocytes, was significantly lower and female-biased two or three days after beginning of treatment in children given artesunate-mefloquine.</p> <p>Conclusion</p> <p>Addition of artesunate to mefloquine significantly modified the emergence, clearance, and densities of gametocytes and has short-lived, but significant, sex ratio modifying effects in children from this endemic area.</p
Randomized trials of artemisinin-piperaquine, dihydroartemisinin-piperaquine phosphate and artemether-lumefantrine for the treatment of multi-drug resistant falciparum malaria in Cambodia-Thailand border area
<p>Abstract</p> <p>Background</p> <p>Drug resistance of falciparum malaria is a global problem. Sulphadoxine/pyrimethamine-resistant and mefloquine-resistant strains of falciparum malaria have spread in Southeast Asia at lightning speed in 1980s-1990s, and the Cambodia-Thailand border is one of the malaria epidemic areas with the most severe forms of multi-drug resistant falciparum malaria.</p> <p>Methods</p> <p>Artemisinin-piperaquine (AP), dihydroartemisinin-piperaquine phosphate (DHP) and artemether-lumefantrine (AL) were used to treat 110, 55 and 55 uncomplicated malaria patients, respectively. The total dosage for adults is 1,750 mg (four tablets, twice over 24 hours) of AP, 2,880 mg (eight tablets, four times over two days) of DHP, and 3,360 mg (24 tablets, six times over three days) of AL. The 28-day cure rate, parasite clearance time, fever clearance time, and drug tolerance of patients to the three drugs were compared. All of the above methods were consistent with the current national guidelines.</p> <p>Results</p> <p>The mean parasite clearance time was similar in all three groups (66.7 ± 21.9 hrs, 65.6 ± 27.3 hrs, 65.3 ± 22.5 hrs in AP, DHP and AL groups, respectively), and there was no remarkable difference between them; the fever clearance time was also similar (31.6 ± 17.7 hrs, 34.6 ± 21.8 hrs and 36.9 ± 15.4 hrs, respectively). After following up for 28-days, the cure rate was 95.1%(97/102), 98.2%(54/55) and 82.4%(42/51); and the recrudescence cases was 4.9%(5/102), 1.8%(1/55) and 17.6%(9/51), respectively. Therefore, the statistical data showed that 28-day cure rate in AP and DHP groups was superior to AL group obviously.</p> <p>The patients had good tolerance to all the three drugs, and some side effects (anoxia, nausea, vomiting, headache and dizziness) could be found in every group and they were self-limited; patients in control groups also had good tolerance to DHP and AL, there was no remarkable difference in the three groups.</p> <p>Conclusions</p> <p>AP, DHP and AL all remained efficacious treatments for the treatment of falciparum malaria in Cambodia-Thailand border area. However, in this particular setting, the AP regimen turned out to be favourable in terms of efficacy and effectiveness, simplicity of administration, cost and compliance.</p> <p>Trial Registration</p> <p>The trial was registered at <it>Chinese Clinical Trial Register </it>under identifier 2005L01041.</p
Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi
<p>Abstract</p> <p>Background</p> <p>The wide use of gametocytocidal artemisinin-based combination therapy (ACT) lead to a reduction of <it>Plasmodium falciparum </it>transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on <it>Plasmodium </it>stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid) abundant in neem (<it>Azadirachta indica</it>, Meliaceae) seeds, is a promising candidate, inhibiting <it>Plasmodium </it>exflagellation <it>in vitro </it>at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal<sup>®</sup>, an azadirachtin-enriched extract of neem seeds, using the rodent malaria <it>in vivo </it>model <it>Plasmodium berghei</it>/<it>Anopheles stephensi</it>.</p> <p>Methods</p> <p><it>Anopheles stephensi </it>females were offered a blood-meal on <it>P. berghei </it>infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal<sup>® </sup>on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined.</p> <p>Results</p> <p>NeemAzal<sup>® </sup>completely blocked <it>P. berghei </it>development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications) did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality of the microtubule organizing centres and with the assembly of cytoskeletal microtubules, which are both fundamental processes in <it>Plasmodium </it>gametogenesis and ookinete formation.</p> <p>Conclusions</p> <p>This work demonstrated <it>in vivo </it>transmission blocking activity of an azadirachtin-enriched neem seed extract at an azadirachtin dose compatible with 'druggability' requisites. These results and evidence of anti-plasmodial activity of neem products accumulated over the last years encourage to convey neem compounds into the drug discovery & development pipeline and to evaluate their potential for the design of novel or improved transmission-blocking remedies.</p
Are rapid diagnostic tests more accurate in diagnosis of plasmodium falciparum malaria compared to microscopy at rural health centres?
<p>Abstract</p> <p>Background</p> <p>Prompt, accurate diagnosis and treatment with artemisinin combination therapy remains vital to current malaria control. Blood film microscopy the current standard test for diagnosis of malaria has several limitations that necessitate field evaluation of alternative diagnostic methods especially in low income countries of sub-Saharan Africa where malaria is endemic.</p> <p>Methods</p> <p>The accuracy of axillary temperature, health centre (HC) microscopy, expert microscopy and a HRP2-based rapid diagnostic test (Paracheck) was compared in predicting malaria infection using polymerase chain reaction (PCR) as the gold standard. Three hundred patients with a clinical suspicion of malaria based on fever and or history of fever from a low and high transmission setting in Uganda were consecutively enrolled and provided blood samples for all tests. Accuracy of each test was calculated overall with 95% confidence interval and then adjusted for age-groups and level of transmission intensity using a stratified analysis. The endpoints were: sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). This study is registered with Clinicaltrials.gov, NCT00565071.</p> <p>Results</p> <p>Of the 300 patients, 88(29.3%) had fever, 56(18.7%) were positive by HC microscopy, 47(15.7%) by expert microscopy, 110(36.7%) by Paracheck and 89(29.7%) by PCR. The overall sensitivity >90% was only shown by Paracheck 91.0% [95%CI: 83.1-96.0]. The sensitivity of expert microscopy was 46%, similar to HC microscopy. The superior sensitivity of Paracheck compared to microscopy was maintained when data was stratified for transmission intensity and age. The overall specificity rates were: Paracheck 86.3% [95%CI: 80.9-90.6], HC microscopy 93.4% [95%CI: 89.1-96.3] and expert microscopy 97.2% [95%CI: 93.9-98.9]. The NPV >90% was shown by Paracheck 95.8% [95%CI: 91.9-98.2]. The overall PPV was <88% for all methods.</p> <p>Conclusion</p> <p>The HRP2-based RDT has shown superior sensitivity compared to microscopy in diagnosis of malaria and may be more suitable for screening of malaria infection.</p
Comparison of three methods for detection of gametocytes in Melanesian children treated for uncomplicated malaria
Background: Gametocytes are the transmission stages of Plasmodium parasites, the causative agents of malaria. As their density in the human host is typically low, they are often undetected by conventional light microscopy. Furthermore, application of RNA-based molecular detection methods for gametocyte detection remains challenging in remote field settings. In the present study, a detailed comparison of three methods, namely light microscopy, magnetic fractionation and reverse transcriptase polymerase chain reaction for detection of Plasmodium falciparum and Plasmodium vivax gametocytes was conducted.Methods. Peripheral blood samples from 70 children aged 0.5 to five years with uncomplicated malaria who were treated with either artemether-lumefantrine or artemisinin-naphthoquine were collected from two health facilities on the north coast of Papua New Guinea. The samples were taken prior to treatment (day 0) and at pre-specified intervals during follow-up. Gametocytes were measured in each sample by three methods: i) light microscopy (LM), ii) quantitative magnetic fractionation (MF) and, iii) reverse transcriptase PCR (RTPCR). Data were analysed using censored linear regression and Bland and Altman techniques.Results: MF and RTPCR were similarly sensitive and specific, and both were superior to LM. Overall, there were approximately 20% gametocyte-positive samples by LM, whereas gametocyte positivity by MF and RTPCR were both more than two-fold this level. In the subset of samples collected prior to treatment, 29% of children were positive by LM, and 85% were gametocyte positive by MF and RTPCR, respectively.Conclusions: The present study represents the first direct comparison of standard LM, MF and RTPCR for gametocyte detection in field isolates. It provides strong evidence that MF is superior to LM and can be used to detect gametocytaemic patients under field conditions with similar sensitivity and specificity as RTPCR
Evaluation of a novel magneto-optical method for the detection of malaria parasites
Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as approximately 40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/microL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/microL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs
Optimally timing primaquine treatment to reduce Plasmodium falciparum transmission in low endemicity Thai-Myanmar border populations
<p>Abstract</p> <p>Background</p> <p>Effective malaria control has successfully reduced the malaria burden in many countries, but to eliminate malaria, these countries will need to further improve their control efforts. Here, a malaria control programme was critically evaluated in a very low-endemicity Thai-Myanmar border population, where early detection and prompt treatment have substantially reduced, though not ended, <it>Plasmodium falciparum </it>transmission, in part due to carriage of late-maturing gametocytes that remain post-treatment. To counter this effect, the WHO recommends the use of a single oral dose of primaquine along with an effective blood schizonticide. However, while the effectiveness of primaquine as a gametocidal agent is widely documented, the mismatch between primaquine's short half-life, the long-delay for gametocyte maturation and the proper timing of primaquine administration have not been studied.</p> <p>Methods</p> <p>Mathematical models were constructed to simulate 8-year surveillance data, between 1999 and 2006, of seven villages along the Thai-Myanmar border. A simple model was developed to consider primaquine pharmacokinetics and pharmacodynamics, gametocyte carriage, and infectivity.</p> <p>Results</p> <p>In these populations, transmission intensity is very low, so the <it>P. falciparum </it>parasite rate is strongly linked to imported malaria and to the fraction of cases not treated. Given a 3.6-day half-life of gametocyte, the estimated duration of infectiousness would be reduced by 10 days for every 10-fold reduction in initial gametocyte densities. Infectiousness from mature gametocytes would last two to four weeks and sustain some transmission, depending on the initial parasite densities, but the residual mature gametocytes could be eliminated by primaquine. Because of the short half-life of primaquine (approximately eight hours), it was immediately obvious that with early administration (within three days after an acute attack), primaquine would not be present when mature gametocytes emerged eight days after the appearance of asexual blood-stage parasites. A model of optimal timing suggests that primaquine follow-up approximately eight days after a clinical episode could further reduce the duration of infectiousness from two to four weeks down to a few days. The prospects of malaria elimination would be substantially improved by changing the timing of primaquine administration and combining this with effective detection and management of imported malaria cases. The value of using primaquine to reduce residual gametocyte densities and to reduce malaria transmission was considered in the context of a malaria transmission model; the added benefit of the primaquine follow-up treatment would be relatively large only if a high fraction of patients (>95%) are initially treated with schizonticidal agents.</p> <p>Conclusion</p> <p>Mathematical models have previously identified the long duration of <it>P. falciparum </it>asexual blood-stage infections as a critical point in maintaining malaria transmission, but infectiousness can persist for two to four weeks because of residual populations of mature gametocytes. Simulations from new models suggest that, in areas where a large fraction of malaria cases are treated, curing the asexual parasitaemia in a primary infection, and curing mature gametocyte infections with an eight-day follow-up treatment with primaquine have approximately the same proportional effects on reducing the infectious period. Changing the timing of primaquine administration would, in all likelihood, interrupt transmission in this area with very good health systems and with very low endemicity.</p
- …