272 research outputs found
Electronic properties and Fermi surface of Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces
Silver films were deposited at room temperature onto H-passivated Si(111)
surfaces. Their electronic properties have been analyzed by angle-resolved
photoelectron spectroscopy. Submonolayer films were semiconducting and the
onset of metallization was found at a Ag coverage of 0.6 monolayers. Two
surface states were observed at -point in the metallic films,
with binding energies of 0.1 and 0.35 eV. By measurements of photoelectron
angular distribution at the Fermi level in these films, a cross-sectional cut
of the Fermi surface was obtained. The Fermi vector determined along different
symmetry directions and the photoelectron lifetime of states at the Fermi level
are quite close to those expected for Ag single crystal. In spite of this
concordance, the Fermi surface reflects a sixfold symmetry rather than the
threefold symmetry of Ag single crystal. This behavior was attributed to the
fact that these Ag films are composed by two domains rotated 60.Comment: 9 pages, 8 figures, submitted to Physical Review
A tunneling picture of dual giant Wilson loop
We further discuss a rotating dual giant Wilson loop (D3-brane) solution
constructed in Lorentzian AdS by Drukker et al. The solution is shown to be
composed of a dual giant Wilson loop and a dual giant graviton by minutely
examining its shape. This observation suggests that the corresponding
gauge-theory operator should be a k-th symmetric Wilson loop with the
insertions of dual giant graviton operators. To support the correspondence, the
classical action of the solution should be computed and compared with the
gauge-theory result. For this purpose we first perform a Wick rotation to the
Lorentzian solution by following the tunneling prescription and obtain
Euclidean solutions corresponding to a circular or a straight-line Wilson loop.
In Euclidean signature boundary terms can be properly considered in the
standard manner and the classical action for the Euclidean solutions can be
evaluated. The result indeed reproduces the expectation value of the k-th
symmetric Wilson loop as well as the power-law behavior of the correlation
function of dual giant graviton operators.Comment: 34 pages, 19 figures, v2: references adde
The WEBT Campaign on the Blazar 3C279 in 2006
The quasar 3C279 was the target of an extensive multiwavelength monitoring
campaign from January through April 2006, including an optical-IR-radio
monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration.
In this paper we focus on the results of the WEBT campaign. The source
exhibited substantial variability of optical flux and spectral shape, with a
characteristic time scale of a few days. The variability patterns throughout
the optical BVRI bands were very closely correlated with each other. In
intriguing contrast to other (in particular, BL Lac type) blazars, we find a
lag of shorter- behind longer-wavelength variability throughout the RVB ranges,
with a time delay increasing with increasing frequency. Spectral hardening
during flares appears delayed with respect to a rising optical flux. This, in
combination with the very steep IR-optical continuum spectral index of ~ 1.5 -
2.0, may indicate a highly oblique magnetic field configuration near the base
of the jet. An alternative explanation through a slow (time scale of several
days) acceleration mechanism would require an unusually low magnetic field of <
0.2 G, about an order of magnitude lower than inferred from previous analyses
of simultaneous SEDs of 3C279 and other FSRQs with similar properties.Comment: Accepted for publication in Ap
The unprecedented optical outburst of the quasar 3C 454.3. The WEBT campaign of 2004-2005
The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting
more than 1 year and culminating in spring 2005. The maximum brightness
detected was R = 12.0, which represents the most luminous quasar state thus far
observed (M_B ~ -31.4). In order to follow the emission behaviour of the source
in detail, a large multiwavelength campaign was organized by the Whole Earth
Blazar Telescope (WEBT). Continuous optical, near-IR and radio monitoring was
performed in several bands. ToO pointings by the Chandra and INTEGRAL
satellites provided additional information at high energies in May 2005. The
historical radio and optical light curves show different behaviours. Until
about 2001.0 only moderate variability was present in the optical regime, while
prominent and long-lasting radio outbursts were visible at the various radio
frequencies, with higher-frequency variations preceding the lower-frequency
ones. After that date, the optical activity increased and the radio flux is
less variable. This suggests that the optical and radio emissions come from two
separate and misaligned jet regions, with the inner optical one acquiring a
smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index
behaviour (generally redder-when-brighter) during the outburst suggests the
presence of a luminous accretion disc. A huge mm outburst followed the optical
one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux
started to increase in early 2005 and reached a maximum at the end of our
observing period (end of September 2005). VLBA observations at 43 GHz during
the summer confirm theComment: 7 pages, 4 figures, to be published in A&
WEBT and XMM-Newton observations of 3C 454.3 during the post-outburst phase. Detection of the little and big blue bumps
The blazar 3C 454.3 underwent an unprecedented optical outburst in spring
2005. This was first followed by a mm and then by a cm radio outburst, which
peaked in February 2006. We report on follow-up observations by the WEBT to
study the multiwavelength emission in the post-outburst phase. XMM-Newton
observations on July and December 2006 added information on the X-ray and UV
fluxes. The source was in a faint state. The radio flux at the higher
frequencies showed a fast decreasing trend, which represents the tail of the
big radio outburst. It was followed by a quiescent state, common at all radio
frequencies. In contrast, moderate activity characterized the NIR and optical
light curves, with a progressive increase of the variability amplitude with
increasing wavelength. We ascribe this redder-when-brighter behaviour to the
presence of a "little blue bump" due to line emission from the broad line
region, which is clearly visible in the source SED during faint states.
Moreover, the data from the XMM-Newton OM reveal a rise of the SED in the UV,
suggesting the existence of a "big blue bump" due to thermal emission from the
accretion disc. The X-ray spectra are well fitted with a power-law model with
photoelectric absorption, possibly larger than the Galactic one. However, the
comparison with previous X-ray observations would imply that the amount of
absorbing matter is variable. Alternatively, the intrinsic X-ray spectrum
presents a curvature, which may depend on the X-ray brightness. In this case,
two scenarios are possible.Comment: 9 pages, 7 figures, accepted for publication in A&
A quantitative analysis of the effect of cycle length on arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts
The clinically established proarrhythmic effect of bradycardia and antiarrhythmic effect of lidocaine (10 μM) were reproduced in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced over a range (80–180 ms) of baseline cycle lengths (BCLs). Action potential durations (at 90% repolarization, APD90s), transmural conduction times and ventricular effective refractory periods (VERPs) were then determined from monophasic action potential records obtained during a programmed electrical stimulation procedure in which extrasystolic stimuli were interposed following regular stimuli at successively decreasing coupling intervals. A novel graphical analysis of epicardial and endocardial, local and transmural relationships between APD90, corrected for transmural conduction time where appropriate, and VERP yielded predictions in precise agreement with the arrhythmogenic findings obtained over the entire range of BCLs studied. Thus, in normokalaemic (5.2 mM K+) hearts a statistical analysis confirmed that all four relationships were described by straight lines of gradients not significantly (P > 0.05) different from unity that passed through the origin and thus subtended constant critical angles, θ with the abscissa (45.8° ± 0.9°, 46.6° ± 0.5°, 47.6° ± 0.5° and 44.9° ± 0.8°, respectively). Hypokalaemia shifted all points to the left of these reference lines, significantly (P < 0.05) increasing θ at BCLs of 80–120 ms where arrhythmic activity was not observed (∼63°, ∼54°, ∼55° and ∼58°, respectively) and further significantly (P < 0.05) increasing θ at BCLs of 140–180 ms where arrhythmic activity was observed (∼68°, ∼60°, ∼61° and ∼65°, respectively). In contrast, the antiarrhythmic effect of lidocaine treatment was accompanied by a significant (P < 0.05) disruption of this linear relationship and decreases in θ in both normokalaemic (∼40°, ∼33°, ∼39° and ∼41°, respectively) and hypokalaemic (∼40°, ∼44°, ∼50° and ∼48°, respectively) hearts. This extended a previous approach that had correlated alterations in transmural repolarization gradients with arrhythmogenicity in murine models of the congenital long QT syndrome type 3 and hypokalaemia at a single BCL. Thus, the analysis in terms of APD90 and VERP provided a more sensitive indication of the effect of lidocaine than one only considering transmural repolarization gradients and may be particularly applicable in physiological and pharmacological situations in which these parameters diverge
Collaborative Action of Brca1 and CtIP in Elimination of Covalent Modifications from Double-Strand Breaks to Facilitate Subsequent Break Repair
Topoisomerase inhibitors such as camptothecin and etoposide are used as anti-cancer drugs and induce double-strand breaks (DSBs) in genomic DNA in cycling cells. These DSBs are often covalently bound with polypeptides at the 3′ and 5′ ends. Such modifications must be eliminated before DSB repair can take place, but it remains elusive which nucleases are involved in this process. Previous studies show that CtIP plays a critical role in the generation of 3′ single-strand overhang at “clean” DSBs, thus initiating homologous recombination (HR)–dependent DSB repair. To analyze the function of CtIP in detail, we conditionally disrupted the CtIP gene in the chicken DT40 cell line. We found that CtIP is essential for cellular proliferation as well as for the formation of 3′ single-strand overhang, similar to what is observed in DT40 cells deficient in the Mre11/Rad50/Nbs1 complex. We also generated DT40 cell line harboring CtIP with an alanine substitution at residue Ser332, which is required for interaction with BRCA1. Although the resulting CtIPS332A/−/− cells exhibited accumulation of RPA and Rad51 upon DNA damage, and were proficient in HR, they showed a marked hypersensitivity to camptothecin and etoposide in comparison with CtIP+/−/− cells. Finally, CtIPS332A/−/−BRCA1−/− and CtIP+/−/−BRCA1−/− showed similar sensitivities to these reagents. Taken together, our data indicate that, in addition to its function in HR, CtIP plays a role in cellular tolerance to topoisomerase inhibitors. We propose that the BRCA1-CtIP complex plays a role in the nuclease-mediated elimination of oligonucleotides covalently bound to polypeptides from DSBs, thereby facilitating subsequent DSB repair
FGF-2, TGFβ-1, PDGF-A and respective receptors expression in pleomorphic adenoma myoepithelial cells: an in vivo and in vitro study
Myoepithelial cells have an important role in salivary gland tumor development, contributing to a low grade of aggressiveness of these tumors. Normal myoepithelial cells are known by their suppressor function presenting increased expression of extracellular matrix genes and protease inhibitors. The importance of stromal cells and growth factors during tumor initiation and progression has been highlighted by recent literature. Many tumors result from the alteration of paracrine growth factors pathways. Growth factors mediate a wide variety of biological processes such as development, tissue repair and tumorigenesis, and also contribute to cellular proliferation and transformation in neoplastic cells. OBJECTIVES: This study evaluated the expression of fibroblast growth factor-2 (FGF-2), transforming growth factor β-1 (TGFβ-1), platelet-derived growth factor-A (PDGF-A) and their respective receptors (FGFR-1, FGFR-2, TGFβR-II and PDGFR-α) in myoepithelial cells from pleomorphic adenomas (PA) by in vivo and in vitro experiments. MATERIAL AND METHODS: Serial sections were obtained from paraffin-embedded PA samples obtained from the school's files. Myoepithelial cells were obtained from explants of PA tumors provided by surgery from different donors. Immunohistochemistry, cell culture and immunofluorescence assays were used to evaluate growth factor expression. RESULTS: The present findings demonstrated that myoepithelial cells from PA were mainly positive to FGF-2 and FGFR-1 by immunohistochemistry and immunofluorescence. PDGF-A and PDGFR-α had moderate expression by immunohistochemistry and presented punctated deposits throughout cytoplasm of myoepithelial cells. FGFR-2, TGFβ-1 and TGFβR-II were negative in all samples. CONCLUSIONS: These data suggested that FGF-2 compared to the other studied growth factors has an important role in PA benign myoepithelial cells, probably contributing to proliferation of these cells through the FGFR-1
- …