13 research outputs found
Temporal Dynamics of Interferon Gamma Responses in Children Evaluated for Tuberculosis
BACKGROUND: Development of T-cells based-Interferon gamma (IFNgamma) assays has offered new possibilities for the diagnosis of latent tuberculosis infection (LTBI) and active disease in adults. Few studies have been performed in children, none in France. With reference to the published data on childhood TB epidemiology in the Paris and Ile de France Region, we considered it important to evaluate the performance of IGRA (QuantiFERON TB Gold In Tube(R), QF-TB-IT) in the diagnosis and the follow-up through treatment of LTBI and active TB in a cohort of French children. METHODOLOGY/PRINCIPAL FINDINGS: 131 children were recruited during a prospective and multicentre study (October 2005 and May 2007; Ethical Committee St Louis Hospital, Paris, study number 2005/32). Children were sampled at day 0, 10, 30, 60 (except Healthy Contacts, HC) and 90 for LTBI and HC, and a further day 120, and day 180 for active TB children. Median age was 7.4 years, with 91% of the children BCG vaccinated. LTBI and active TB children undergoing therapy produced significant higher IFNgamma values after 10 days of treatment (p = 0.035). In addition, IFNgamma values were significantly lower at the end of treatment compared to IFNgamma values at day 0, although the number of positive patients was not significantly different between day 0 and end of treatment. CONCLUSIONS/ SIGNIFICANCE: By following quantitative IFNgamma values in each enrolled child with LTBI or active TB and receiving treatment, we were able to detect an increase in the IFNgamma response at day 10 of treatment which might allow the confirmation of a diagnosis. In addition, a decline in IFNgamma values during treatment makes it possible for clinicians to monitor the effect of preventive or curative therapy
Tuberculosis and HIV Co-Infection
Tuberculosis (TB) and HIV co-infections place an immense burden on health care systems and pose particular diagnostic and therapeutic challenges. Infection with HIV is the most powerful known risk factor predisposing for Mycobacterium tuberculosis infection and progression to active disease, which increases the risk of latent TB reactivation 20-fold. TB is also the most common cause of AIDS-related death. Thus, M. tuberculosis and HIV act in synergy, accelerating the decline of immunological functions and leading to subsequent death if untreated. The mechanisms behind the breakdown of the immune defense of the co-infected individual are not well known. The aim of this review is to highlight immunological events that may accelerate the development of one of the two diseases in the presence of the co-infecting organism. We also review possible animal models for studies of the interaction of the two pathogens, and describe gaps in knowledge and needs for future studies to develop preventive measures against the two diseases
Immune Response to Infection with Mycobacterium ulcerans
Mycobacterium ulcerans is a slow-growing, acid-fast bacillus that causes chronic necrotizing skin ulcers known as Buruli ulcers. Previously reported information on immunity to this mycobacterium is limited. We examined immune responses to M. ulcerans and M. bovis BCG in patients with M. ulcerans disease and in 20 healthy control subjects (10 tuberculin test positive and 10 tuberculin test negative). Cell-mediated immunity was assessed by stimulating peripheral blood mononuclear cells (PBMC) with whole mycobacteria and then measuring PBMC proliferation and the production of gamma interferon (IFN-Ξ³). Humoral immunity was assessed by immunoblotting. PBMC from all subjects showed significantly greater proliferation and IFN-Ξ³ production in response to stimulation with living mycobacteria compared with killed cells. However, PBMC from subjects with past or current M. ulcerans disease showed significantly reduced proliferation and production of IFN-Ξ³ in response to stimulation with live M. ulcerans or M. bovis than PBMC from healthy, tuberculin test-positive subjects (P < 0.001) and showed results in these assays comparable to those of tuberculin test-negative subjects (P > 0.2). Serum from 9 of 11 patients with M. ulcerans disease, but no control subject, contained antibodies to M. ulcerans. The results indicate that patients with M. ulcerans infection mount an immune response to M. ulcerans as evidenced by antibody production, but they demonstrate profound systemic T-cell anergy to mycobacterial antigens. These findings may explain some of the distinct clinical and pathological features of M. ulcerans-induced disease
Immune Complexes Isolated from Patients with Pulmonary Tuberculosis Modulate the Activation and Function of Normal Granulocytes
Circulating immune complexes (ICs) are associated with the pathogenesis of several diseases. Very little is known about the effect of ICs on the host immune response in patients with tuberculosis (TB). The effects of ICs isolated from patients with TB in modulating the release of calcium, cytokines, and granular proteins were studied in normal granulocytes, as were their chemotactic, phagocytic, and oxidative burst processes. ICs from TB patients induced decreased production of cytokines and platelet-activating factor (PAF) from normal granulocytes. ICs from TB patients also induced enhanced chemotaxis and phagocytosis but caused diminished oxidative burst. This was accompanied by an increased release in intracellular calcium. On the other hand, ICs from TB patients induced increased release of the granular proteins human neutrophil peptides 1 to 3 (HNP1β3). Thus, ICs from patients with TB exhibit a profound effect on granulocyte function with activation of certain effector mechanisms and dampening of others