113 research outputs found
Experimental observation of extreme multistability in an electronic system of two coupled R\"{o}ssler oscillators
We report the first experimental observation of extreme multistability in a
controlled laboratory investigation. Extreme multistability arises when
infinitely many attractors coexist for the same set of system parameters. The
behavior was predicted earlier on theoretical grounds, supported by numerical
studies of models of two coupled identical or nearly identical systems. We
construct and couple two analog circuits based on a modified coupled
R\"{o}ssler system and demonstrate the occurrence of extreme multistability
through a controlled switching to different attractor states purely through a
change in initial conditions for a fixed set of system parameters. Numerical
studies of the coupled model equations are in agreement with our experimental
findings.Comment: to be published in Phys. Rev.
Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism
Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery
Chimera-like states in modular neural networks
Chimera states, namely the coexistence of coherent and incoherent behavior, were previously analyzed in complex networks. However, they have not been extensively studied in modular networks. Here, we consider a neural network inspired by the connectome of the C. elegans soil worm, organized into six interconnected communities, where neurons obey chaotic bursting dynamics. Neurons are assumed to be connected with electrical synapses within their communities and with chemical synapses across them. As our numerical simulations reveal, the coaction of these two types of coupling can shape the dynamics in such a way that chimera-like states can happen. They consist of a fraction of synchronized neurons which belong to the larger communities, and a fraction of desynchronized neurons which are part of smaller communities. In addition to the Kuramoto order parameter ?, we also employ other measures of coherence, such as the chimera-like ? and metastability ? indices, which quantify the degree of synchronization among communities and along time, respectively. We perform the same analysis for networks that share common features with the C. elegans neural network. Similar results suggest that under certain assumptions, chimera-like states are prominent phenomena in modular networks, and might provide insight for the behavior of more complex modular networks
Centrifugal melt spinning of polyvinylpyrrolidone (PVP)/triacontene copolymer fibres
Polyvinylpyrrolidone/1-triacontene (PVP/TA) copolymer fibre webs produced by centrifugal melt spinning were studied to determine the influence of jet rotation speed on morphology and internal structure as well as their potential utility as adsorbent capture media for disperse dye effluents. Fibres were produced at 72 C with jet head rotation speeds from 7000 to 15,000 r min-1. The fibres were characterised by means of SEM, XRD and DSC. Adsorption behaviour was investigated by means of an isothermal bottle point adsorption study using a commercial disperse dye, Dianix AC-E. Through centrifugal spinning nanofibers and microfibers could be produced with individual fibres as fine as 200–300 nm and mean fibre diameters of ca. 1–2 lm. The PVP/TA fibres were mechanically brittle with characteristic brittle tensile fracture regions observed at the fibre ends. DSC and XRD analyses suggested that this brittleness was linked to the graft chain crystallisation where the PVP/TA was in the form of a radial brush copolymer. In this structure, the triacontene branches interlock and form small lateral crystals around an amorphous backbone. As an adsorbent, the PVP/TA fibres were found to adsorb 35.4 mg g-1 compared to a benchmark figure of 30.0 mg g-1 for a granular-activated carbon adsorbent under the same application conditions. PVP/TA is highly hydrophobic and adsorbs disperse dyes through the strong ‘‘hydrophobic bonding’’ interaction. Such fibrous assemblies may have applications in the targeted adsorption and separation of non-polar species from aqueous or polar environments
Sparse Gamma Rhythms Arising through Clustering in Adapting Neuronal Networks
Gamma rhythms (30–100 Hz) are an extensively studied synchronous brain state responsible for a number of sensory, memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons
Stability of amplitude chimeras in oscillator networks
This work was supported by DFG in the framework of SFB 91
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have
fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in
25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16
regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of
correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP,
while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in
Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium
(LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region.
Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant
enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the
refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa,
an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of
PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent
signals within the same regio
- …