2,437 research outputs found

    Waveform Design for Secure SISO Transmissions and Multicasting

    Full text link
    Wireless physical-layer security is an emerging field of research aiming at preventing eavesdropping in an open wireless medium. In this paper, we propose a novel waveform design approach to minimize the likelihood that a message transmitted between trusted single-antenna nodes is intercepted by an eavesdropper. In particular, with knowledge first of the eavesdropper's channel state information (CSI), we find the optimum waveform and transmit energy that minimize the signal-to-interference-plus-noise ratio (SINR) at the output of the eavesdropper's maximum-SINR linear filter, while at the same time provide the intended receiver with a required pre-specified SINR at the output of its own max-SINR filter. Next, if prior knowledge of the eavesdropper's CSI is unavailable, we design a waveform that maximizes the amount of energy available for generating disturbance to eavesdroppers, termed artificial noise (AN), while the SINR of the intended receiver is maintained at the pre-specified level. The extensions of the secure waveform design problem to multiple intended receivers are also investigated and semidefinite relaxation (SDR) -an approximation technique based on convex optimization- is utilized to solve the arising NP-hard design problems. Extensive simulation studies confirm our analytical performance predictions and illustrate the benefits of the designed waveforms on securing single-input single-output (SISO) transmissions and multicasting

    Decision Fusion in Space-Time Spreading aided Distributed MIMO WSNs

    Full text link
    In this letter, we propose space-time spreading (STS) of local sensor decisions before reporting them over a wireless multiple access channel (MAC), in order to achieve flexible balance between diversity and multiplexing gain as well as eliminate any chance of intrinsic interference inherent in MAC scenarios. Spreading of the sensor decisions using dispersion vectors exploits the benefits of multi-slot decision to improve low-complexity diversity gain and opportunistic throughput. On the other hand, at the receive side of the reporting channel, we formulate and compare optimum and sub-optimum fusion rules for arriving at a reliable conclusion.Simulation results demonstrate gain in performance with STS aided transmission from a minimum of 3 times to a maximum of 6 times over performance without STS.Comment: 5 pages, 5 figure

    Stochastic Subgradient Algorithms for Strongly Convex Optimization over Distributed Networks

    Full text link
    We study diffusion and consensus based optimization of a sum of unknown convex objective functions over distributed networks. The only access to these functions is through stochastic gradient oracles, each of which is only available at a different node, and a limited number of gradient oracle calls is allowed at each node. In this framework, we introduce a convex optimization algorithm based on the stochastic gradient descent (SGD) updates. Particularly, we use a carefully designed time-dependent weighted averaging of the SGD iterates, which yields a convergence rate of O(NNT)O\left(\frac{N\sqrt{N}}{T}\right) after TT gradient updates for each node on a network of NN nodes. We then show that after TT gradient oracle calls, the average SGD iterate achieves a mean square deviation (MSD) of O(NT)O\left(\frac{\sqrt{N}}{T}\right). This rate of convergence is optimal as it matches the performance lower bound up to constant terms. Similar to the SGD algorithm, the computational complexity of the proposed algorithm also scales linearly with the dimensionality of the data. Furthermore, the communication load of the proposed method is the same as the communication load of the SGD algorithm. Thus, the proposed algorithm is highly efficient in terms of complexity and communication load. We illustrate the merits of the algorithm with respect to the state-of-art methods over benchmark real life data sets and widely studied network topologies

    Optimal Timer Based Selection Schemes

    Full text link
    Timer-based mechanisms are often used to help a given (sink) node select the best helper node among many available nodes. Specifically, a node transmits a packet when its timer expires, and the timer value is a monotone non-increasing function of its local suitability metric. The best node is selected successfully if no other node's timer expires within a 'vulnerability' window after its timer expiry, and so long as the sink can hear the available nodes. In this paper, we show that the optimal metric-to-timer mapping that (i) maximizes the probability of success or (ii) minimizes the average selection time subject to a minimum constraint on the probability of success, maps the metric into a set of discrete timer values. We specify, in closed-form, the optimal scheme as a function of the maximum selection duration, the vulnerability window, and the number of nodes. An asymptotic characterization of the optimal scheme turns out to be elegant and insightful. For any probability distribution function of the metric, the optimal scheme is scalable, distributed, and performs much better than the popular inverse metric timer mapping. It even compares favorably with splitting-based selection, when the latter's feedback overhead is accounted for.Comment: 21 pages, 6 figures, 1 table, submitted to IEEE Transactions on Communications, uses stackrel.st

    Average Consensus in the Presence of Delays and Dynamically Changing Directed Graph Topologies

    Full text link
    Classical approaches for asymptotic convergence to the global average in a distributed fashion typically assume timely and reliable exchange of information between neighboring components of a given multi-component system. These assumptions are not necessarily valid in practical settings due to varying delays that might affect transmissions at different times, as well as possible changes in the underlying interconnection topology (e.g., due to component mobility). In this work, we propose protocols to overcome these limitations. We first consider a fixed interconnection topology (captured by a - possibly directed - graph) and propose a discrete-time protocol that can reach asymptotic average consensus in a distributed fashion, despite the presence of arbitrary (but bounded) delays in the communication links. The protocol requires that each component has knowledge of the number of its outgoing links (i.e., the number of components to which it sends information). We subsequently extend the protocol to also handle changes in the underlying interconnection topology and describe a variety of rather loose conditions under which the modified protocol allows the components to reach asymptotic average consensus. The proposed algorithms are illustrated via examples.Comment: 37 page

    Quantum correlations and fluctuations in the pulsed light produced by a synchronously pumped optical parametric oscillator below its oscillation threshold

    Full text link
    We present a simple quantum theory for the pulsed light generated by a synchronously pumped optical parametric oscillator (SPOPO) in the degenerate case where the signal and idler trains of pulses coincide, below threshold and neglecting all dispersion effects. Our main goal is to precise in the obtained quantum effects, which ones are identical to the c.w. case and which ones are specific to the SPOPO. We demonstrate in particular that the temporal correlations have interesting peculiarities: the quantum fluctuations at different times within the same pulse turn out to be totally not correlated, whereas they are correlated between nearby pulses at times that are placed in the same position relative to the centre of the pulses. The number of significantly correlated pulses is of the order of cavity finesse. We show also that there is perfect squeezing at noise frequencies multiple of the pulse repetition frequency when one approaches the threshold from below on the signal field quadrature measured by a balanced homodyne detection with a local oscillator of very short duration compared to the SPOPO pulse length.Comment: 12 pages, 3 figure

    Quasi-static characterisation and impact testing of auxetic foam for sports safety applications

    Get PDF
    This study compared low strain rate material properties and impact force attenuation of auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our knowledge with regards to how best to apply these highly conformable and breathable auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 x 150 x 150 mm were fabricated using a thermo-mechanical conversion process. Quasi-static compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm thick cuboid samples for further testing. Density, Poisson’s ratio and the stress-strain curve were all found to be dependent on the position of each cuboid from within the cube. Impact tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced peak force by ~10 times in comparison to the conventional foam. This work has shown further potential for auxetic foam to be applied to protective equipment, while identifying that improved fabrication methods are required

    Construction and Performance of Large-Area Triple-GEM Prototypes for Future Upgrades of the CMS Forward Muon System

    Get PDF
    At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-\eta region. An international collaboration is investigating the possibility of covering the 1.6 < |\eta| < 2.4 region of the muon endcaps with large-area triple-GEM detectors. Given their good spatial resolution, high rate capability, and radiation hardness, these micro-pattern gas detectors are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study will be presented. The design and construction of small (10\times10 cm2) and full-size trapezoidal (1\times0.5 m2) triple-GEM prototypes will be described. During detector assembly, different techniques for stretching the GEM foils were tested. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system will be reported.Comment: 7 pages, 25 figures, submitted for publication in conference record of the 2011 IEEE Nuclear Science Symposium, Valencia, Spai
    corecore