2,058 research outputs found

    Super-Eddington Atmospheres that Don't Blow Away

    Get PDF
    We show that magnetized, radiation dominated atmospheres can support steady state patterns of density inhomogeneity that enable them to radiate at far above the Eddington limit, without suffering mass loss. The inhomogeneities consist of periodic shock fronts bounding narrow, high-density regions, interspersed with much broader regions of low density. The radiation flux avoids the regions of high density, which are therefore weighed down by gravity, while gas in the low-density regions is slammed upward into the shock fronts by radiation force. As the wave pattern moves through the atmosphere, each parcel of matter alternately experiences upward and downward forces, which balance on average. Magnetic tension shares the competing forces between regions of different densities, preventing the atmosphere from blowing apart. We calculate the density structure and phase speed of the wave pattern, and relate these to the wavelength, the density contrast, and the factor by which the net radiation flux exceeds the Eddington limit. In principle, this factor can be as large as the ratio of magnetic pressure to mean gas pressure, or the ratio of radiation pressure to gas pressure, whichever is smaller. Although the magnetic pressure must be large compared to the mean gas pressure in order to support a large density contrast, it need not be large compared to the radiation pressure. These highly inhomogeneous flows could represent the nonlinear development of the "photon bubble" instability discovered by Gammie. We briefly discuss the applicability of these solutions to astrophysical systems.Comment: 11 pages, 1 figure, accepted for publication in The Astrophysical Journa

    Births to Teens Older and Younger Than 17 Years in San Bernardino County and California: Variables Associated with Infant Mortality and Survival

    Get PDF
    Objective: The purpose of this cohort, descriptive study was to attempt to understand the variables associated with discordant infant mortality among teenagers 17-19 years old whose infants demonstrated higher mortality than infants of teenagers who were younger than 17 years old in San Bernardino County, California. The intent was to elicit further research and/or define appropriate interventions for teen mothers within the age range 17-19 years. Methods: Data was abstracted from an electronic infant mortality data set, the State of California Birth Cohort File in which birth records from San Bernardino County for the period 1989 through 1993 were matched with mortality records. Results: The data showed that infants of white teens within the 17-19 age groups were more likely to have higher infant mortality rates when compared to their younger peers. Infant mortality rates among offspring of Hispanic and black teenage mothers showed no discrepancy between the two groups nor between county and state rates. Conclusions: Further study is needed to answer why infants of white teen mothers in the 17-19 age groups have higher mortality rates. There is also a need to review the services rendered to pregnant and parenting adolescents in San Bernardino County. In addition, very low birth weight infants were much more likely to die when born to older teens than when born to younger teens

    Corotating light cylinders and Alfv\'en waves

    Full text link
    Exact relativistic force free fields with cylindrical symmetry are explored. Such fields are generated in the interstellar gas via their connection to pulsar magnetospheres both inside and outside their light cylinders. The possibility of much enhanced interstellar fields wound on cylinders of Solar system dimensions is discussed but these are most likely unstable.Comment: 6 pages, 6 figures, accepted by MNRA

    Reactivity of the Indenyl Radical (C9 H7 ) with Acetylene (C2 H2 ) and Vinylacetylene (C4 H4 ).

    Get PDF
    The reactions of the indenyl radicals with acetylene (C2 H2 ) and vinylacetylene (C4 H4 ) is studied in a hot chemical reactor coupled to synchrotron based vacuum ultraviolet ionization mass spectrometry. These experimental results are combined with theory to reveal that the resonantly stabilized and thermodynamically most stable 1-indenyl radical (C9 H7 . ) is always formed in the pyrolysis of 1-, 2-, 6-, and 7-bromoindenes at 1500 K. The 1-indenyl radical reacts with acetylene yielding 1-ethynylindene plus atomic hydrogen, rather than adding a second acetylene molecule and leading to ring closure and formation of fluorene as observed in other reaction mechanisms such as the hydrogen abstraction acetylene addition or hydrogen abstraction vinylacetylene addition pathways. While this reaction mechanism is analogous to the bimolecular reaction between the phenyl radical (C6 H5 . ) and acetylene forming phenylacetylene (C6 H5 CCH), the 1-indenyl+acetylene→1-ethynylindene+hydrogen reaction is highly endoergic (114 kJ mol-1 ) and slow, contrary to the exoergic (-38 kJ mol-1 ) and faster phenyl+acetylene→phenylacetylene+hydrogen reaction. In a similar manner, no ring closure leading to fluorene formation was observed in the reaction of 1-indenyl radical with vinylacetylene. These experimental results are explained through rate constant calculations based on theoretically derived potential energy surfaces
    • …
    corecore