173 research outputs found

    Supersymmetry in Slow Motion

    Full text link
    We construct new theories of electroweak symmetry breaking that employ a combination of supersymmetry and discrete symmetries to stabilize the weak scale up to and beyond the energies probed by the LHC. These models exhibit conventional supersymmetric spectra but the fermion-sfermion-gaugino vertices are absent. This closes many conventional decay channels, thereby allowing several superpartners to be stable on collider time scales. This opens the door to the possibility of directly observing R-hadrons and three flavors of sleptons inside the LHC detectors.Comment: A reference added. The discussion on the Higgs sector expanded. The version accepted for publication in JHE

    Conformal Technicolor

    Full text link
    We point out that the flavor problem in theories with dynamical electroweak symmetry breaking can be effectively decoupled if the physics above the TeV scale is strongly conformal, and the electroweak order parameter has a scaling dimension d = 1 + epsilon with epsilon \simeq 1/few. There are many restrictions on small values of epsilon: for epsilon << 1, electroweak symmetry breaking requires a fine-tuning similar to that of the standard model; large-N conformal field theories (including those obtained from the AdS/CFT correspondence) require fine-tuning for d < 2; `walking technicolor' theories cannot have d < 2, according to gap equation analyses. However, strong small-N conformal field theories with epsilon \simeq 1/few avoid all these constraints, and can give rise to natural dynamical electroweak symmetry breaking with a top quark flavor scale of order 10^{1/epsilon} TeV, large enough to decouple flavor. Small-N theories also have an acceptably small Peskin-Takeuchi S parameter. This class of theories provides a new direction for dynamical electroweak symmetry breaking without problems from flavor or electroweak precision tests. A possible signal for these theories is a prominent scalar resonance below the TeV scale with couplings similar to a heavy standard model Higgs.Comment: 26 pages + References. Slight wording changes. Version appearing in JHE

    Composite Dirac Neutrinos

    Full text link
    We present a mechanism that naturally produces light Dirac neutrinos. The basic idea is that the right-handed neutrinos are composite. Any realistic composite model must involve `hidden flavor' chiral symmetries. In general some of these symmetries may survive confinement, and in particular, one of them manifests itself at low energy as an exact B−LB-L symmetry. Dirac neutrinos are therefore produced. The neutrinos are naturally light due to compositeness. In general, sterile states are present in the model, some of them can naturally be warm dark matter candidates.Comment: 12 pages; Sec. IIC updated; minor corrections; published versio

    Low Energy 6-Dimensional N=2 Supersymmertric SU(6) Models on T2T^2 Orbifolds

    Get PDF
    We propose low energy 6-dimensional N=2 supersymmetric SU(6) models on M4×T2/(Z2)3M^4\times T^2/(Z_2)^3 and M4×T2/(Z2)4M^4\times T^2/(Z_2)^4, where the orbifold SU(3)C×SU(3)SU(3)_C\times SU(3) model can be embedded on the boundary 4-brane. For the zero modes, the 6-dimensional N=2 supersymmetry and the SU(6) gauge symmetry are broken down to the 4-dimensional N=1 supersymmetry and the SU(3)C×SU(2)L×U(1)Y×U(1)â€ČSU(3)_C\times SU(2)_L\times U(1)_Y\times U(1)' gauge symmetry by orbifold projections. In order to cancel the anomalies involving at least one U(1)â€ČU(1)', we add extra exotic particles. We also study the anomaly free conditions and present some anomaly free models. The gauge coupling unification can be achieved at 100∌200100\sim 200 TeV if the compactification scale for the fifth dimension is 3∌43\sim 4 TeV. The proton decay problem can be avoided by putting the quarks and leptons/neutrinos on different 3-branes. And we discuss how to break the SU(3)C×SU(2)L×U(1)Y×U(1)â€ČSU(3)_C\times SU(2)_L\times U(1)_Y\times U(1)' gauge symmetry, solve the ÎŒ\mu problem, and generate the Z−Zâ€ČZ-Z' mass hierarchy naturally by using the geometry. The masses of exotic particles can be at the order of 1 TeV after the gauge symmetry breaking. We also forbid the dimension-5 operators for the neutrino masses by U(1)â€ČU(1)' gauge symmetry, and the realistic left-handed neutrino masses can be obtained via non-renormalizable terms.Comment: Latex, 33 pages, discussion and references adde

    A novel PI3K inhibitor iMDK suppresses non-small cell lung Cancer cooperatively with A MEK inhibitor

    Get PDF
    The PI3K–AKT pathway is expected to be a therapeutic target for non-small cell lung cancer (NSCLC) treatment. We previously reported that a novel PI3K inhibitor iMDK suppressed NSCLC cells in vitro and in vivo without harming normal cells and mice. Unexpectedly, iMDK activated the MAPK pathway, including ERK, in the NSCLC cells. Since iMDK did not eradicate such NSCLC cells completely, it is possible that the activated MAPK pathway confers resistance to the NSCLC cells against cell death induced by iMDK. In the present study, we assessed whether suppressing of iMDK-mediated activation of the MAPK pathway would enhance anti-tumorigenic activity of iMDK. PD0325901, a MAPK inhibitor, suppressed the MAPK pathway induced by iMDK and cooperatively inhibited cell viability and colony formation of NSCLC cells by inducing apoptosis in vitro. HUVEC tube formation, representing angiogenic processes in vitro, was also cooperatively inhibited by the combinatorial treatment of iMDK and PD0325901. The combinatorial treatment of iMDK with PD0325901 cooperatively suppressed tumor growth and tumor-associated angiogenesis in a lung cancer xenograft model in vivo. Here, we demonstrate a novel treatment strategy using iMDK and PD0325901 to eradicate NSCLC

    Vectorlike Confinement at the LHC

    Full text link
    We argue for the plausibility of a broad class of vectorlike confining gauge theories at the TeV scale which interact with the Standard Model predominantly via gauge interactions. These theories have a rich phenomenology at the LHC if confinement occurs at the TeV scale, while ensuring negligible impact on precision electroweak and flavor observables. Spin-1 bound states can be resonantly produced via their mixing with Standard Model gauge bosons. The resonances promptly decay to pseudo-Goldstone bosons, some of which promptly decay to a pair of Standard Model gauge bosons, while others are charged and stable on collider time scales. The diverse set of final states with little background include multiple photons and leptons, missing energy, massive stable charged particles and the possibility of highly displaced vertices in dilepton, leptoquark or diquark decays. Among others, a novel experimental signature of resonance reconstruction out of massive stable charged particles is highlighted. Some of the long-lived states also constitute Dark Matter candidates.Comment: 33 pages, 6 figures. v4: expanded discussion of Z_2 symmetry for stability, one reference adde

    KeV Warm Dark Matter and Composite Neutrinos

    Full text link
    Elementary keV sterile Dirac neutrinos can be a natural ingredient of the composite neutrino scenario. For a certain class of composite neutrino theories, these sterile neutrinos naturally have the appropriate mixing angles to be resonantly produced warm dark matter (WDM). Alternatively, we show these sterile neutrinos can be WDM produced by an entropy-diluted thermal freeze-out, with the necessary entropy production arising not from an out-of-equilibrium decay, but rather from the confinement of the composite neutrino sector, provided there is sufficient supercooling.Comment: 12 pages, 2 figures, published versio

    Neutrino Mass and Ό→e+Îł\mu \rightarrow e + \gamma from a Mini-Seesaw

    Full text link
    The recently proposed "mini-seesaw mechanism" combines naturally suppressed Dirac and Majorana masses to achieve light Standard Model neutrinos via a low-scale seesaw. A key feature of this approach is the presence of multiple light (order GeV) sterile-neutrinos that mix with the Standard Model. In this work we study the bounds on these light sterile-neutrinos from processes like \mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We show that viable parameter space exists and that, interestingly, key observables can lie just below current experimental sensitivities. In particular, a motivated region of parameter space predicts a value of BR(\mu ---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to presentation, results unchanged

    LHC String Phenomenology

    Get PDF
    We argue that it is possible to address the deeper LHC Inverse Problem, to gain insight into the underlying theory from LHC signatures of new physics. We propose a technique which may allow us to distinguish among, and favor or disfavor, various classes of underlying theoretical constructions using (assumed) new physics signals at the LHC. We think that this can be done with limited data (5−10fb−1)(5-10 fb^{-1}), and improved with more data. This is because of two reasons -- a) it is possible in many cases to reliably go from (semi)realistic microscopic string construction to the space of experimental observables, say, LHC signatures. b) The patterns of signatures at the LHC are sensitive to the structure of the underlying theoretical constructions. We illustrate our approach by analyzing two promising classes of string compactifications along with six other string-motivated constructions. Even though these constructions are not complete, they illustrate the point we want to emphasize. We think that using this technique effectively over time can eventually help us to meaningfully connect experimental data to microscopic theory.Comment: 50 Pages, 13 Figures, 3 Tables, v2: minor changes, references adde
    • 

    corecore